Cargando…
Deformation Behavior and Microstructural Evolution of T-Shape Upsetting Test in Ultrafine-Grained Pure Copper
Ultrafine-grained (UFG) materials can effectively solve the problem of size effects and improve the mechanical properties due to its ultra-high strength. This paper is dedicated to analyzing the deformation behavior and microstructural evolution of UFG pure copper based on T-shape upsetting test. Ex...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432700/ https://www.ncbi.nlm.nih.gov/pubmed/34500956 http://dx.doi.org/10.3390/ma14174869 |
Sumario: | Ultrafine-grained (UFG) materials can effectively solve the problem of size effects and improve the mechanical properties due to its ultra-high strength. This paper is dedicated to analyzing the deformation behavior and microstructural evolution of UFG pure copper based on T-shape upsetting test. Experimental results demonstrate that: the edge radius and V-groove angle have significant effects on the rib height and aspect ratio λ during T-shape upsetting; while the surface roughness has little effect on the forming load in the first stage, but in the second stage the influence becomes significant. The dynamic recrystallization temperature of UFG pure copper is between 200 °C and 250 °C. |
---|