Cargando…
Comparison between Multiple Regression Analysis, Polynomial Regression Analysis, and an Artificial Neural Network for Tensile Strength Prediction of BFRP and GFRP
In this study, multiple regression analysis (MRA) and polynomial regression analysis (PRA), which are traditional statistical methods, were applied to analyze factors affecting the tensile strength of basalt and glass fiber-reinforced polymers (FRPs) exposed to alkaline environments and predict the...
Autores principales: | Kim, Younghwan, Oh, Hongseob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432702/ https://www.ncbi.nlm.nih.gov/pubmed/34500948 http://dx.doi.org/10.3390/ma14174861 |
Ejemplares similares
-
Multi-Excitation Infrared Fusion for Impact Evaluation of Aluminium-BFRP/GFRP Hybrid Composites
por: Hu, Jue, et al.
Publicado: (2021) -
Modification of Rule of Mixtures for Tensile Strength Estimation of Circular GFRP Rebars
por: You, Young-Jun, et al.
Publicado: (2017) -
Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures
por: Ellis, Devon S., et al.
Publicado: (2018) -
Evolutionary polynomial regression improved by regularization methods
por: Li, Yao, et al.
Publicado: (2023) -
Tensile Strength and Degradation of GFRP Bars under Combined Effects of Mechanical Load and Alkaline Solution
por: Jin, Qingping, et al.
Publicado: (2020)