Cargando…
Ion transport activity and optogenetics capability of light-driven Na(+)-pump KR2
KR2 from marine bacteria Krokinobacter eikastus is a light-driven Na(+) pumping rhodopsin family (NaRs) member that actively transports Na(+) and/or H(+) depending on the ionic state. We here report electrophysiological studies on KR2 to address ion-transport properties under various electrochemical...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432791/ https://www.ncbi.nlm.nih.gov/pubmed/34506508 http://dx.doi.org/10.1371/journal.pone.0256728 |
_version_ | 1783751238569951232 |
---|---|
author | Hososhima, Shoko Kandori, Hideki Tsunoda, Satoshi P. |
author_facet | Hososhima, Shoko Kandori, Hideki Tsunoda, Satoshi P. |
author_sort | Hososhima, Shoko |
collection | PubMed |
description | KR2 from marine bacteria Krokinobacter eikastus is a light-driven Na(+) pumping rhodopsin family (NaRs) member that actively transports Na(+) and/or H(+) depending on the ionic state. We here report electrophysiological studies on KR2 to address ion-transport properties under various electrochemical potentials of Δ[Na(+)], ΔpH, membrane voltage and light quality, because the contributions of these on the pumping activity were less understood so far. After transient expression of KR2 in mammalian cultured cells (ND7/23 cells), photocurrents were measured by whole-cell patch clamp under various intracellular Na(+) and pH conditions. When KR2 was continuously illuminated with LED light, two distinct time constants were obtained depending on the Na(+) concentration. KR2 exhibited slow ion transport (τ(off) of 28 ms) below 1.1 mM NaCl and rapid transport (τ(off) of 11 ms) above 11 mM NaCl. This indicates distinct transporting kinetics of H(+) and Na(+). Photocurrent amplitude (current density) depends on the intracellular Na(+) concentration, as is expected for a Na(+) pump. The M-intermediate in the photocycle of KR2 could be transferred into the dark state without net ion transport by blue light illumination on top of green light. The M intermediate was stabilized by higher membrane voltage. Furthermore, we assessed the optogenetic silencing effect of rat cortical neurons after expressing KR2. Light power dependency revealed that action potential was profoundly inhibited by 1.5 mW/mm(2) green light illumination, confirming the ability to apply KR2 as an optogenetics silencer. |
format | Online Article Text |
id | pubmed-8432791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-84327912021-09-11 Ion transport activity and optogenetics capability of light-driven Na(+)-pump KR2 Hososhima, Shoko Kandori, Hideki Tsunoda, Satoshi P. PLoS One Research Article KR2 from marine bacteria Krokinobacter eikastus is a light-driven Na(+) pumping rhodopsin family (NaRs) member that actively transports Na(+) and/or H(+) depending on the ionic state. We here report electrophysiological studies on KR2 to address ion-transport properties under various electrochemical potentials of Δ[Na(+)], ΔpH, membrane voltage and light quality, because the contributions of these on the pumping activity were less understood so far. After transient expression of KR2 in mammalian cultured cells (ND7/23 cells), photocurrents were measured by whole-cell patch clamp under various intracellular Na(+) and pH conditions. When KR2 was continuously illuminated with LED light, two distinct time constants were obtained depending on the Na(+) concentration. KR2 exhibited slow ion transport (τ(off) of 28 ms) below 1.1 mM NaCl and rapid transport (τ(off) of 11 ms) above 11 mM NaCl. This indicates distinct transporting kinetics of H(+) and Na(+). Photocurrent amplitude (current density) depends on the intracellular Na(+) concentration, as is expected for a Na(+) pump. The M-intermediate in the photocycle of KR2 could be transferred into the dark state without net ion transport by blue light illumination on top of green light. The M intermediate was stabilized by higher membrane voltage. Furthermore, we assessed the optogenetic silencing effect of rat cortical neurons after expressing KR2. Light power dependency revealed that action potential was profoundly inhibited by 1.5 mW/mm(2) green light illumination, confirming the ability to apply KR2 as an optogenetics silencer. Public Library of Science 2021-09-10 /pmc/articles/PMC8432791/ /pubmed/34506508 http://dx.doi.org/10.1371/journal.pone.0256728 Text en © 2021 Hososhima et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hososhima, Shoko Kandori, Hideki Tsunoda, Satoshi P. Ion transport activity and optogenetics capability of light-driven Na(+)-pump KR2 |
title | Ion transport activity and optogenetics capability of light-driven Na(+)-pump KR2 |
title_full | Ion transport activity and optogenetics capability of light-driven Na(+)-pump KR2 |
title_fullStr | Ion transport activity and optogenetics capability of light-driven Na(+)-pump KR2 |
title_full_unstemmed | Ion transport activity and optogenetics capability of light-driven Na(+)-pump KR2 |
title_short | Ion transport activity and optogenetics capability of light-driven Na(+)-pump KR2 |
title_sort | ion transport activity and optogenetics capability of light-driven na(+)-pump kr2 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432791/ https://www.ncbi.nlm.nih.gov/pubmed/34506508 http://dx.doi.org/10.1371/journal.pone.0256728 |
work_keys_str_mv | AT hososhimashoko iontransportactivityandoptogeneticscapabilityoflightdrivennapumpkr2 AT kandorihideki iontransportactivityandoptogeneticscapabilityoflightdrivennapumpkr2 AT tsunodasatoship iontransportactivityandoptogeneticscapabilityoflightdrivennapumpkr2 |