Cargando…
A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C
Evaluating liver fibrosis is crucial for disease severity assessment, treatment decisions, and hepatocarcinogenic risk prediction among patients with chronic hepatitis C. In this retrospective multicenter study, we aimed to construct a novel model formula to predict cirrhosis. A total of 749 patient...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432856/ https://www.ncbi.nlm.nih.gov/pubmed/34506563 http://dx.doi.org/10.1371/journal.pone.0257166 |
_version_ | 1783751253949415424 |
---|---|
author | Atsukawa, Masanori Tsubota, Akihito Kondo, Chisa Uchida-Kobayashi, Sawako Takaguchi, Koichi Tsutsui, Akemi Nozaki, Akito Chuma, Makoto Hidaka, Isao Ishikawa, Tsuyoshi Iwasa, Motoh Tamai, Yasuyuki Tobari, Maki Matsuura, Kentaro Nagura, Yoshihito Abe, Hiroshi Kato, Keizo Suzuki, Kenta Okubo, Tomomi Arai, Taeang Itokawa, Norio Toyoda, Hidenori Enomoto, Masaru Tamori, Akihiro Tanaka, Yasuhito Kawada, Norifumi Takei, Yoshiyuki Iwakiri, Katsuhiko |
author_facet | Atsukawa, Masanori Tsubota, Akihito Kondo, Chisa Uchida-Kobayashi, Sawako Takaguchi, Koichi Tsutsui, Akemi Nozaki, Akito Chuma, Makoto Hidaka, Isao Ishikawa, Tsuyoshi Iwasa, Motoh Tamai, Yasuyuki Tobari, Maki Matsuura, Kentaro Nagura, Yoshihito Abe, Hiroshi Kato, Keizo Suzuki, Kenta Okubo, Tomomi Arai, Taeang Itokawa, Norio Toyoda, Hidenori Enomoto, Masaru Tamori, Akihiro Tanaka, Yasuhito Kawada, Norifumi Takei, Yoshiyuki Iwakiri, Katsuhiko |
author_sort | Atsukawa, Masanori |
collection | PubMed |
description | Evaluating liver fibrosis is crucial for disease severity assessment, treatment decisions, and hepatocarcinogenic risk prediction among patients with chronic hepatitis C. In this retrospective multicenter study, we aimed to construct a novel model formula to predict cirrhosis. A total of 749 patients were randomly allocated to training and validation sets at a ratio of 2:1. Liver stiffness measurement (LSM) was made via transient elastography using FibroScan. Patients with LSM ≥12.5 kPa were regarded as having cirrhosis. The best model formula for predicting cirrhosis was constructed based on factors significantly and independently associated with LSM (≥12.5 kPa) using multivariate regression analysis. Among the 749 patients, 198 (26.4%) had LSM ≥12.5 kPa. In the training set, multivariate analysis identified logarithm natural (ln) type IV collagen 7S, ln hyaluronic acid, and ln Wisteria floribunda agglutinin positive Mac-2-binding protein (WFA(+)-Mac-2 BP) as the factors that were significantly and independently associated with LSM ≥12.5 kPa. Thus, the formula was constructed as follows: score = −6.154 + 1.166 × ln type IV collagen 7S + 0.526 × ln hyaluronic acid + 1.069 × WFA(+)-Mac-2 BP. The novel formula yielded the highest area under the curve (0.882; optimal cutoff, −0.381), specificity (81.5%), positive predictive values (62.6%), and predictive accuracy (81.6%) for predicting LSM ≥12.5 kPa among fibrosis markers and indices. These results were almost similar to those in the validated set, indicating the reproducibility and validity of the novel formula. The novel formula scores were significantly, strongly, and positively correlated with LSM values in both the training and validation data sets (correlation coefficient, 0.721 and 0.762; p = 2.67 × 10(−81) and 1.88 × 10(−48), respectively). In conclusion, the novel formula was highly capable of diagnosing cirrhosis in patients with chronic hepatitis C and exhibited better diagnostic performance compared to conventional fibrosis markers and indices. |
format | Online Article Text |
id | pubmed-8432856 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-84328562021-09-11 A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C Atsukawa, Masanori Tsubota, Akihito Kondo, Chisa Uchida-Kobayashi, Sawako Takaguchi, Koichi Tsutsui, Akemi Nozaki, Akito Chuma, Makoto Hidaka, Isao Ishikawa, Tsuyoshi Iwasa, Motoh Tamai, Yasuyuki Tobari, Maki Matsuura, Kentaro Nagura, Yoshihito Abe, Hiroshi Kato, Keizo Suzuki, Kenta Okubo, Tomomi Arai, Taeang Itokawa, Norio Toyoda, Hidenori Enomoto, Masaru Tamori, Akihiro Tanaka, Yasuhito Kawada, Norifumi Takei, Yoshiyuki Iwakiri, Katsuhiko PLoS One Research Article Evaluating liver fibrosis is crucial for disease severity assessment, treatment decisions, and hepatocarcinogenic risk prediction among patients with chronic hepatitis C. In this retrospective multicenter study, we aimed to construct a novel model formula to predict cirrhosis. A total of 749 patients were randomly allocated to training and validation sets at a ratio of 2:1. Liver stiffness measurement (LSM) was made via transient elastography using FibroScan. Patients with LSM ≥12.5 kPa were regarded as having cirrhosis. The best model formula for predicting cirrhosis was constructed based on factors significantly and independently associated with LSM (≥12.5 kPa) using multivariate regression analysis. Among the 749 patients, 198 (26.4%) had LSM ≥12.5 kPa. In the training set, multivariate analysis identified logarithm natural (ln) type IV collagen 7S, ln hyaluronic acid, and ln Wisteria floribunda agglutinin positive Mac-2-binding protein (WFA(+)-Mac-2 BP) as the factors that were significantly and independently associated with LSM ≥12.5 kPa. Thus, the formula was constructed as follows: score = −6.154 + 1.166 × ln type IV collagen 7S + 0.526 × ln hyaluronic acid + 1.069 × WFA(+)-Mac-2 BP. The novel formula yielded the highest area under the curve (0.882; optimal cutoff, −0.381), specificity (81.5%), positive predictive values (62.6%), and predictive accuracy (81.6%) for predicting LSM ≥12.5 kPa among fibrosis markers and indices. These results were almost similar to those in the validated set, indicating the reproducibility and validity of the novel formula. The novel formula scores were significantly, strongly, and positively correlated with LSM values in both the training and validation data sets (correlation coefficient, 0.721 and 0.762; p = 2.67 × 10(−81) and 1.88 × 10(−48), respectively). In conclusion, the novel formula was highly capable of diagnosing cirrhosis in patients with chronic hepatitis C and exhibited better diagnostic performance compared to conventional fibrosis markers and indices. Public Library of Science 2021-09-10 /pmc/articles/PMC8432856/ /pubmed/34506563 http://dx.doi.org/10.1371/journal.pone.0257166 Text en © 2021 Atsukawa et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Atsukawa, Masanori Tsubota, Akihito Kondo, Chisa Uchida-Kobayashi, Sawako Takaguchi, Koichi Tsutsui, Akemi Nozaki, Akito Chuma, Makoto Hidaka, Isao Ishikawa, Tsuyoshi Iwasa, Motoh Tamai, Yasuyuki Tobari, Maki Matsuura, Kentaro Nagura, Yoshihito Abe, Hiroshi Kato, Keizo Suzuki, Kenta Okubo, Tomomi Arai, Taeang Itokawa, Norio Toyoda, Hidenori Enomoto, Masaru Tamori, Akihiro Tanaka, Yasuhito Kawada, Norifumi Takei, Yoshiyuki Iwakiri, Katsuhiko A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C |
title | A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C |
title_full | A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C |
title_fullStr | A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C |
title_full_unstemmed | A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C |
title_short | A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C |
title_sort | novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis c |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432856/ https://www.ncbi.nlm.nih.gov/pubmed/34506563 http://dx.doi.org/10.1371/journal.pone.0257166 |
work_keys_str_mv | AT atsukawamasanori anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tsubotaakihito anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT kondochisa anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT uchidakobayashisawako anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT takaguchikoichi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tsutsuiakemi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT nozakiakito anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT chumamakoto anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT hidakaisao anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT ishikawatsuyoshi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT iwasamotoh anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tamaiyasuyuki anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tobarimaki anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT matsuurakentaro anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT nagurayoshihito anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT abehiroshi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT katokeizo anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT suzukikenta anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT okubotomomi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT araitaeang anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT itokawanorio anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT toyodahidenori anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT enomotomasaru anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tamoriakihiro anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tanakayasuhito anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT kawadanorifumi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT takeiyoshiyuki anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT iwakirikatsuhiko anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT atsukawamasanori novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tsubotaakihito novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT kondochisa novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT uchidakobayashisawako novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT takaguchikoichi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tsutsuiakemi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT nozakiakito novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT chumamakoto novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT hidakaisao novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT ishikawatsuyoshi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT iwasamotoh novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tamaiyasuyuki novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tobarimaki novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT matsuurakentaro novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT nagurayoshihito novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT abehiroshi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT katokeizo novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT suzukikenta novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT okubotomomi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT araitaeang novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT itokawanorio novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT toyodahidenori novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT enomotomasaru novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tamoriakihiro novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT tanakayasuhito novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT kawadanorifumi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT takeiyoshiyuki novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc AT iwakirikatsuhiko novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc |