Cargando…

A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C

Evaluating liver fibrosis is crucial for disease severity assessment, treatment decisions, and hepatocarcinogenic risk prediction among patients with chronic hepatitis C. In this retrospective multicenter study, we aimed to construct a novel model formula to predict cirrhosis. A total of 749 patient...

Descripción completa

Detalles Bibliográficos
Autores principales: Atsukawa, Masanori, Tsubota, Akihito, Kondo, Chisa, Uchida-Kobayashi, Sawako, Takaguchi, Koichi, Tsutsui, Akemi, Nozaki, Akito, Chuma, Makoto, Hidaka, Isao, Ishikawa, Tsuyoshi, Iwasa, Motoh, Tamai, Yasuyuki, Tobari, Maki, Matsuura, Kentaro, Nagura, Yoshihito, Abe, Hiroshi, Kato, Keizo, Suzuki, Kenta, Okubo, Tomomi, Arai, Taeang, Itokawa, Norio, Toyoda, Hidenori, Enomoto, Masaru, Tamori, Akihiro, Tanaka, Yasuhito, Kawada, Norifumi, Takei, Yoshiyuki, Iwakiri, Katsuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432856/
https://www.ncbi.nlm.nih.gov/pubmed/34506563
http://dx.doi.org/10.1371/journal.pone.0257166
_version_ 1783751253949415424
author Atsukawa, Masanori
Tsubota, Akihito
Kondo, Chisa
Uchida-Kobayashi, Sawako
Takaguchi, Koichi
Tsutsui, Akemi
Nozaki, Akito
Chuma, Makoto
Hidaka, Isao
Ishikawa, Tsuyoshi
Iwasa, Motoh
Tamai, Yasuyuki
Tobari, Maki
Matsuura, Kentaro
Nagura, Yoshihito
Abe, Hiroshi
Kato, Keizo
Suzuki, Kenta
Okubo, Tomomi
Arai, Taeang
Itokawa, Norio
Toyoda, Hidenori
Enomoto, Masaru
Tamori, Akihiro
Tanaka, Yasuhito
Kawada, Norifumi
Takei, Yoshiyuki
Iwakiri, Katsuhiko
author_facet Atsukawa, Masanori
Tsubota, Akihito
Kondo, Chisa
Uchida-Kobayashi, Sawako
Takaguchi, Koichi
Tsutsui, Akemi
Nozaki, Akito
Chuma, Makoto
Hidaka, Isao
Ishikawa, Tsuyoshi
Iwasa, Motoh
Tamai, Yasuyuki
Tobari, Maki
Matsuura, Kentaro
Nagura, Yoshihito
Abe, Hiroshi
Kato, Keizo
Suzuki, Kenta
Okubo, Tomomi
Arai, Taeang
Itokawa, Norio
Toyoda, Hidenori
Enomoto, Masaru
Tamori, Akihiro
Tanaka, Yasuhito
Kawada, Norifumi
Takei, Yoshiyuki
Iwakiri, Katsuhiko
author_sort Atsukawa, Masanori
collection PubMed
description Evaluating liver fibrosis is crucial for disease severity assessment, treatment decisions, and hepatocarcinogenic risk prediction among patients with chronic hepatitis C. In this retrospective multicenter study, we aimed to construct a novel model formula to predict cirrhosis. A total of 749 patients were randomly allocated to training and validation sets at a ratio of 2:1. Liver stiffness measurement (LSM) was made via transient elastography using FibroScan. Patients with LSM ≥12.5 kPa were regarded as having cirrhosis. The best model formula for predicting cirrhosis was constructed based on factors significantly and independently associated with LSM (≥12.5 kPa) using multivariate regression analysis. Among the 749 patients, 198 (26.4%) had LSM ≥12.5 kPa. In the training set, multivariate analysis identified logarithm natural (ln) type IV collagen 7S, ln hyaluronic acid, and ln Wisteria floribunda agglutinin positive Mac-2-binding protein (WFA(+)-Mac-2 BP) as the factors that were significantly and independently associated with LSM ≥12.5 kPa. Thus, the formula was constructed as follows: score = −6.154 + 1.166 × ln type IV collagen 7S + 0.526 × ln hyaluronic acid + 1.069 × WFA(+)-Mac-2 BP. The novel formula yielded the highest area under the curve (0.882; optimal cutoff, −0.381), specificity (81.5%), positive predictive values (62.6%), and predictive accuracy (81.6%) for predicting LSM ≥12.5 kPa among fibrosis markers and indices. These results were almost similar to those in the validated set, indicating the reproducibility and validity of the novel formula. The novel formula scores were significantly, strongly, and positively correlated with LSM values in both the training and validation data sets (correlation coefficient, 0.721 and 0.762; p = 2.67 × 10(−81) and 1.88 × 10(−48), respectively). In conclusion, the novel formula was highly capable of diagnosing cirrhosis in patients with chronic hepatitis C and exhibited better diagnostic performance compared to conventional fibrosis markers and indices.
format Online
Article
Text
id pubmed-8432856
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-84328562021-09-11 A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C Atsukawa, Masanori Tsubota, Akihito Kondo, Chisa Uchida-Kobayashi, Sawako Takaguchi, Koichi Tsutsui, Akemi Nozaki, Akito Chuma, Makoto Hidaka, Isao Ishikawa, Tsuyoshi Iwasa, Motoh Tamai, Yasuyuki Tobari, Maki Matsuura, Kentaro Nagura, Yoshihito Abe, Hiroshi Kato, Keizo Suzuki, Kenta Okubo, Tomomi Arai, Taeang Itokawa, Norio Toyoda, Hidenori Enomoto, Masaru Tamori, Akihiro Tanaka, Yasuhito Kawada, Norifumi Takei, Yoshiyuki Iwakiri, Katsuhiko PLoS One Research Article Evaluating liver fibrosis is crucial for disease severity assessment, treatment decisions, and hepatocarcinogenic risk prediction among patients with chronic hepatitis C. In this retrospective multicenter study, we aimed to construct a novel model formula to predict cirrhosis. A total of 749 patients were randomly allocated to training and validation sets at a ratio of 2:1. Liver stiffness measurement (LSM) was made via transient elastography using FibroScan. Patients with LSM ≥12.5 kPa were regarded as having cirrhosis. The best model formula for predicting cirrhosis was constructed based on factors significantly and independently associated with LSM (≥12.5 kPa) using multivariate regression analysis. Among the 749 patients, 198 (26.4%) had LSM ≥12.5 kPa. In the training set, multivariate analysis identified logarithm natural (ln) type IV collagen 7S, ln hyaluronic acid, and ln Wisteria floribunda agglutinin positive Mac-2-binding protein (WFA(+)-Mac-2 BP) as the factors that were significantly and independently associated with LSM ≥12.5 kPa. Thus, the formula was constructed as follows: score = −6.154 + 1.166 × ln type IV collagen 7S + 0.526 × ln hyaluronic acid + 1.069 × WFA(+)-Mac-2 BP. The novel formula yielded the highest area under the curve (0.882; optimal cutoff, −0.381), specificity (81.5%), positive predictive values (62.6%), and predictive accuracy (81.6%) for predicting LSM ≥12.5 kPa among fibrosis markers and indices. These results were almost similar to those in the validated set, indicating the reproducibility and validity of the novel formula. The novel formula scores were significantly, strongly, and positively correlated with LSM values in both the training and validation data sets (correlation coefficient, 0.721 and 0.762; p = 2.67 × 10(−81) and 1.88 × 10(−48), respectively). In conclusion, the novel formula was highly capable of diagnosing cirrhosis in patients with chronic hepatitis C and exhibited better diagnostic performance compared to conventional fibrosis markers and indices. Public Library of Science 2021-09-10 /pmc/articles/PMC8432856/ /pubmed/34506563 http://dx.doi.org/10.1371/journal.pone.0257166 Text en © 2021 Atsukawa et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Atsukawa, Masanori
Tsubota, Akihito
Kondo, Chisa
Uchida-Kobayashi, Sawako
Takaguchi, Koichi
Tsutsui, Akemi
Nozaki, Akito
Chuma, Makoto
Hidaka, Isao
Ishikawa, Tsuyoshi
Iwasa, Motoh
Tamai, Yasuyuki
Tobari, Maki
Matsuura, Kentaro
Nagura, Yoshihito
Abe, Hiroshi
Kato, Keizo
Suzuki, Kenta
Okubo, Tomomi
Arai, Taeang
Itokawa, Norio
Toyoda, Hidenori
Enomoto, Masaru
Tamori, Akihiro
Tanaka, Yasuhito
Kawada, Norifumi
Takei, Yoshiyuki
Iwakiri, Katsuhiko
A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C
title A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C
title_full A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C
title_fullStr A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C
title_full_unstemmed A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C
title_short A novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis C
title_sort novel noninvasive formula for predicting cirrhosis in patients with chronic hepatitis c
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432856/
https://www.ncbi.nlm.nih.gov/pubmed/34506563
http://dx.doi.org/10.1371/journal.pone.0257166
work_keys_str_mv AT atsukawamasanori anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tsubotaakihito anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT kondochisa anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT uchidakobayashisawako anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT takaguchikoichi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tsutsuiakemi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT nozakiakito anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT chumamakoto anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT hidakaisao anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT ishikawatsuyoshi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT iwasamotoh anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tamaiyasuyuki anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tobarimaki anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT matsuurakentaro anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT nagurayoshihito anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT abehiroshi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT katokeizo anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT suzukikenta anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT okubotomomi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT araitaeang anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT itokawanorio anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT toyodahidenori anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT enomotomasaru anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tamoriakihiro anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tanakayasuhito anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT kawadanorifumi anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT takeiyoshiyuki anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT iwakirikatsuhiko anovelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT atsukawamasanori novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tsubotaakihito novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT kondochisa novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT uchidakobayashisawako novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT takaguchikoichi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tsutsuiakemi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT nozakiakito novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT chumamakoto novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT hidakaisao novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT ishikawatsuyoshi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT iwasamotoh novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tamaiyasuyuki novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tobarimaki novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT matsuurakentaro novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT nagurayoshihito novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT abehiroshi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT katokeizo novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT suzukikenta novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT okubotomomi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT araitaeang novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT itokawanorio novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT toyodahidenori novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT enomotomasaru novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tamoriakihiro novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT tanakayasuhito novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT kawadanorifumi novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT takeiyoshiyuki novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc
AT iwakirikatsuhiko novelnoninvasiveformulaforpredictingcirrhosisinpatientswithchronichepatitisc