Cargando…
1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes
Microparticulate silicon (Si), normally shelled with carbons, features higher tap density and less interfacial side reactions compared to its nanosized counterpart, showing great potential to be applied as high-energy lithium-ion battery anodes. However, localized high stress generated during fabric...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433081/ https://www.ncbi.nlm.nih.gov/pubmed/34691733 http://dx.doi.org/10.1093/nsr/nwab012 |
_version_ | 1783751301048303616 |
---|---|
author | Chen, Fanqi Han, Junwei Kong, Debin Yuan, Yifei Xiao, Jing Wu, Shichao Tang, Dai-Ming Deng, Yaqian Lv, Wei Lu, Jun Kang, Feiyu Yang, Quan-Hong |
author_facet | Chen, Fanqi Han, Junwei Kong, Debin Yuan, Yifei Xiao, Jing Wu, Shichao Tang, Dai-Ming Deng, Yaqian Lv, Wei Lu, Jun Kang, Feiyu Yang, Quan-Hong |
author_sort | Chen, Fanqi |
collection | PubMed |
description | Microparticulate silicon (Si), normally shelled with carbons, features higher tap density and less interfacial side reactions compared to its nanosized counterpart, showing great potential to be applied as high-energy lithium-ion battery anodes. However, localized high stress generated during fabrication and particularly, under operating, could induce cracking of carbon shells and release pulverized nanoparticles, significantly deteriorating its electrochemical performance. Here we design a strong yet ductile carbon cage from an easily processing capillary shrinkage of graphene hydrogel followed by precise tailoring of inner voids. Such a structure, analog to the stable structure of plant cells, presents ‘imperfection-tolerance’ to volume variation of irregular Si microparticles, maintaining the electrode integrity over 1000 cycles with Coulombic efficiency over 99.5%. This design enables the use of a dense and thick (3 mAh cm(–2)) microparticulate Si anode with an ultra-high volumetric energy density of 1048 Wh L(–1) achieved at pouch full-cell level coupled with a LiNi(0.8)Co(0.1)Mn(0.1)O(2) cathode. |
format | Online Article Text |
id | pubmed-8433081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-84330812021-10-21 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes Chen, Fanqi Han, Junwei Kong, Debin Yuan, Yifei Xiao, Jing Wu, Shichao Tang, Dai-Ming Deng, Yaqian Lv, Wei Lu, Jun Kang, Feiyu Yang, Quan-Hong Natl Sci Rev Research Article Microparticulate silicon (Si), normally shelled with carbons, features higher tap density and less interfacial side reactions compared to its nanosized counterpart, showing great potential to be applied as high-energy lithium-ion battery anodes. However, localized high stress generated during fabrication and particularly, under operating, could induce cracking of carbon shells and release pulverized nanoparticles, significantly deteriorating its electrochemical performance. Here we design a strong yet ductile carbon cage from an easily processing capillary shrinkage of graphene hydrogel followed by precise tailoring of inner voids. Such a structure, analog to the stable structure of plant cells, presents ‘imperfection-tolerance’ to volume variation of irregular Si microparticles, maintaining the electrode integrity over 1000 cycles with Coulombic efficiency over 99.5%. This design enables the use of a dense and thick (3 mAh cm(–2)) microparticulate Si anode with an ultra-high volumetric energy density of 1048 Wh L(–1) achieved at pouch full-cell level coupled with a LiNi(0.8)Co(0.1)Mn(0.1)O(2) cathode. Oxford University Press 2021-01-23 /pmc/articles/PMC8433081/ /pubmed/34691733 http://dx.doi.org/10.1093/nsr/nwab012 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chen, Fanqi Han, Junwei Kong, Debin Yuan, Yifei Xiao, Jing Wu, Shichao Tang, Dai-Ming Deng, Yaqian Lv, Wei Lu, Jun Kang, Feiyu Yang, Quan-Hong 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes |
title | 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes |
title_full | 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes |
title_fullStr | 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes |
title_full_unstemmed | 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes |
title_short | 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes |
title_sort | 1000 wh l(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433081/ https://www.ncbi.nlm.nih.gov/pubmed/34691733 http://dx.doi.org/10.1093/nsr/nwab012 |
work_keys_str_mv | AT chenfanqi 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT hanjunwei 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT kongdebin 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT yuanyifei 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT xiaojing 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT wushichao 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT tangdaiming 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT dengyaqian 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT lvwei 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT lujun 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT kangfeiyu 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes AT yangquanhong 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes |