Cargando…

1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes

Microparticulate silicon (Si), normally shelled with carbons, features higher tap density and less interfacial side reactions compared to its nanosized counterpart, showing great potential to be applied as high-energy lithium-ion battery anodes. However, localized high stress generated during fabric...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Fanqi, Han, Junwei, Kong, Debin, Yuan, Yifei, Xiao, Jing, Wu, Shichao, Tang, Dai-Ming, Deng, Yaqian, Lv, Wei, Lu, Jun, Kang, Feiyu, Yang, Quan-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433081/
https://www.ncbi.nlm.nih.gov/pubmed/34691733
http://dx.doi.org/10.1093/nsr/nwab012
_version_ 1783751301048303616
author Chen, Fanqi
Han, Junwei
Kong, Debin
Yuan, Yifei
Xiao, Jing
Wu, Shichao
Tang, Dai-Ming
Deng, Yaqian
Lv, Wei
Lu, Jun
Kang, Feiyu
Yang, Quan-Hong
author_facet Chen, Fanqi
Han, Junwei
Kong, Debin
Yuan, Yifei
Xiao, Jing
Wu, Shichao
Tang, Dai-Ming
Deng, Yaqian
Lv, Wei
Lu, Jun
Kang, Feiyu
Yang, Quan-Hong
author_sort Chen, Fanqi
collection PubMed
description Microparticulate silicon (Si), normally shelled with carbons, features higher tap density and less interfacial side reactions compared to its nanosized counterpart, showing great potential to be applied as high-energy lithium-ion battery anodes. However, localized high stress generated during fabrication and particularly, under operating, could induce cracking of carbon shells and release pulverized nanoparticles, significantly deteriorating its electrochemical performance. Here we design a strong yet ductile carbon cage from an easily processing capillary shrinkage of graphene hydrogel followed by precise tailoring of inner voids. Such a structure, analog to the stable structure of plant cells, presents ‘imperfection-tolerance’ to volume variation of irregular Si microparticles, maintaining the electrode integrity over 1000 cycles with Coulombic efficiency over 99.5%. This design enables the use of a dense and thick (3 mAh cm(–2)) microparticulate Si anode with an ultra-high volumetric energy density of 1048 Wh L(–1) achieved at pouch full-cell level coupled with a LiNi(0.8)Co(0.1)Mn(0.1)O(2) cathode.
format Online
Article
Text
id pubmed-8433081
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-84330812021-10-21 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes Chen, Fanqi Han, Junwei Kong, Debin Yuan, Yifei Xiao, Jing Wu, Shichao Tang, Dai-Ming Deng, Yaqian Lv, Wei Lu, Jun Kang, Feiyu Yang, Quan-Hong Natl Sci Rev Research Article Microparticulate silicon (Si), normally shelled with carbons, features higher tap density and less interfacial side reactions compared to its nanosized counterpart, showing great potential to be applied as high-energy lithium-ion battery anodes. However, localized high stress generated during fabrication and particularly, under operating, could induce cracking of carbon shells and release pulverized nanoparticles, significantly deteriorating its electrochemical performance. Here we design a strong yet ductile carbon cage from an easily processing capillary shrinkage of graphene hydrogel followed by precise tailoring of inner voids. Such a structure, analog to the stable structure of plant cells, presents ‘imperfection-tolerance’ to volume variation of irregular Si microparticles, maintaining the electrode integrity over 1000 cycles with Coulombic efficiency over 99.5%. This design enables the use of a dense and thick (3 mAh cm(–2)) microparticulate Si anode with an ultra-high volumetric energy density of 1048 Wh L(–1) achieved at pouch full-cell level coupled with a LiNi(0.8)Co(0.1)Mn(0.1)O(2) cathode. Oxford University Press 2021-01-23 /pmc/articles/PMC8433081/ /pubmed/34691733 http://dx.doi.org/10.1093/nsr/nwab012 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Chen, Fanqi
Han, Junwei
Kong, Debin
Yuan, Yifei
Xiao, Jing
Wu, Shichao
Tang, Dai-Ming
Deng, Yaqian
Lv, Wei
Lu, Jun
Kang, Feiyu
Yang, Quan-Hong
1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes
title 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes
title_full 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes
title_fullStr 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes
title_full_unstemmed 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes
title_short 1000 Wh L(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes
title_sort 1000 wh l(−1) lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433081/
https://www.ncbi.nlm.nih.gov/pubmed/34691733
http://dx.doi.org/10.1093/nsr/nwab012
work_keys_str_mv AT chenfanqi 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT hanjunwei 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT kongdebin 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT yuanyifei 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT xiaojing 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT wushichao 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT tangdaiming 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT dengyaqian 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT lvwei 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT lujun 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT kangfeiyu 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes
AT yangquanhong 1000whl1lithiumionbatteriesenabledbycrosslinkshrunktoughcarbonencapsulatedsiliconmicroparticleanodes