Cargando…

Electrospun CNT embedded ZnO nanofiber based biosensor for electrochemical detection of Atrazine: a step closure to single molecule detection

In this study we have reported the design and development of a facile, sensitive, selective, and label-free electrochemical sensing platform for the detection of atrazine based on MWCNT-embedded ZnO nanofibers. Electrospun nanofibers were characterized using scanning electron microscope (SEM), trans...

Descripción completa

Detalles Bibliográficos
Autores principales: Supraja, Patta, Singh, Vikrant, Vanjari, Siva Rama Krishna, Govind Singh, Shiv
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433164/
https://www.ncbi.nlm.nih.gov/pubmed/34567618
http://dx.doi.org/10.1038/s41378-019-0115-9
Descripción
Sumario:In this study we have reported the design and development of a facile, sensitive, selective, and label-free electrochemical sensing platform for the detection of atrazine based on MWCNT-embedded ZnO nanofibers. Electrospun nanofibers were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), UV-Visible spectroscope (UV-VIS), and Fourier-transform infrared spectroscope (FTIR). Electrochemical properties of MWCNT-ZnO nanofiber-modified electrodes were assessed using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Binding event of atrazine to anti-atrazine antibody, which immobilized on nanofiber-modified electrode via EDC and NHS chemistry, was transduced with EIS. Due to high conductivity, surface area, and low bandgap of MWCNT-ZnO nanofibers, we have achieved the sensitivity and limit of detection (LoD) of sensor as 21.61 (KΩ μg(−1) mL(−1)) cm(−2) and 5.368 zM for a wide detection range of 10 zM–1 µM. The proposed immunosensing platform has good stability, selectivity, repeatability, and reproducibility, and are less prone to interference.