Cargando…
Single-vesicle imaging quantifies calcium’s regulation of nanoscale vesicle clustering mediated by α-synuclein
Although numerous studies have shown that the protein α-synuclein (α-Syn) plays a central role in Parkinson’s disease, dementia with Lewy bodies, and other neurodegenerative diseases, the protein’s physiological function remains poorly understood. Furthermore, despite recent reports suggesting that,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433175/ https://www.ncbi.nlm.nih.gov/pubmed/34567651 http://dx.doi.org/10.1038/s41378-020-0147-1 |
Sumario: | Although numerous studies have shown that the protein α-synuclein (α-Syn) plays a central role in Parkinson’s disease, dementia with Lewy bodies, and other neurodegenerative diseases, the protein’s physiological function remains poorly understood. Furthermore, despite recent reports suggesting that, under the influence of Ca(2+), α-Syn can interact with synaptic vesicles, the mechanisms underlying that interaction are far from clear. Thus, we used single-vesicle imaging to quantify the extent to which Ca(2+) regulates nanoscale vesicle clustering mediated by α-Syn. Our results revealed not only that vesicle clustering required α-Syn to bind to anionic lipid vesicles, but also that different concentrations of Ca(2+) exerted different effects on how α-Syn induced vesicle clustering. In particular, low concentrations of Ca(2+) inhibited vesicle clustering by blocking the electrostatic interaction between the lipid membrane and the N terminus of α-Syn, whereas high concentrations promoted vesicle clustering, possibly due to the electrostatic interaction between Ca(2+) and the negatively charged lipids that is independent of α-Syn. Taken together, our results provide critical insights into α-Syn’s physiological function, and how Ca(2+) regulates vesicle clustering mediated by α-Syn. |
---|