Cargando…
A multi-scale gated multi-head attention depthwise separable CNN model for recognizing COVID-19
Coronavirus 2019 (COVID-19) is a new acute respiratory disease that has spread rapidly throughout the world. In this paper, a lightweight convolutional neural network (CNN) model named multi-scale gated multi-head attention depthwise separable CNN (MGMADS-CNN) is proposed, which is based on attentio...
Autores principales: | Hong, Geng, Chen, Xiaoyan, Chen, Jianyong, Zhang, Miao, Ren, Yumeng, Zhang, Xinyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433233/ https://www.ncbi.nlm.nih.gov/pubmed/34508120 http://dx.doi.org/10.1038/s41598-021-97428-8 |
Ejemplares similares
-
WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis
por: Monday, Happy Nkanta, et al.
Publicado: (2022) -
Multi-scale Xception based depthwise separable convolution for single image super-resolution
por: Muhammad, Wazir, et al.
Publicado: (2021) -
Efficiently Classifying Lung Sounds through Depthwise Separable CNN Models with Fused STFT and MFCC Features
por: Jung, Shing-Yun, et al.
Publicado: (2021) -
A Malicious Code Detection Method Based on Stacked Depthwise Separable Convolutions and Attention Mechanism
por: Huang, Hong, et al.
Publicado: (2023) -
LdsConv: Learned Depthwise Separable Convolutions by Group Pruning
por: Lin, Wenxiang, et al.
Publicado: (2020)