Cargando…

Effects of Different Substrates on the Formability and Densification Behaviors of Cemented Carbide Processed by Laser Powder Bed Fusion

Cemented carbide materials are widely applied in cutting tools, drill tools, and mold fabrication due to their superior hardness and wear resistance. Producing cemented carbide parts via the laser powder bed fusion (L-PBF) method has the advantage of fabricating complex structures with a rapid manuf...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Decheng, Yue, Wen, Kang, Jiajie, Wang, Chengbiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433636/
https://www.ncbi.nlm.nih.gov/pubmed/34501115
http://dx.doi.org/10.3390/ma14175027
Descripción
Sumario:Cemented carbide materials are widely applied in cutting tools, drill tools, and mold fabrication due to their superior hardness and wear resistance. Producing cemented carbide parts via the laser powder bed fusion (L-PBF) method has the advantage of fabricating complex structures with a rapid manufacturing speed; however, they were underdeveloped due to their low density and crack formation on the blocks. This work studied the effect of different substrates including 316L substrates, Ni200 substrates, and YG15 substrates on the forming quality of WC-17Co parts fabricated by L-PBF, with the aim of finding the optimal substrate for fabrication. The results revealed that the Ni200 substrates had a better wettability for the single tracks formation than other substrates, and bonding between the built block and the Ni200 substrate was firm without separation during processing with a large range of laser energy inputs. This guaranteed the fabrication of a relatively dense block with fewer cracks. Although the high laser energy input that led to fine crack formation on the blocks formed on the Ni200 substrate, it was found to be better suited to restricting cracks than other substrates.