Cargando…
Deep-Compact-Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems
The rapid growth in the industrial sector has required the development of more productive and reliable machinery, and therefore, leads to complex systems. In this regard, the automatic detection of unknown events in machinery represents a greater challenge, since uncharacterized catastrophic faults...
Autores principales: | Arellano-Espitia, Francisco, Delgado-Prieto, Miguel, Gonzalez-Abreu, Artvin-Darien, Saucedo-Dorantes, Juan Jose, Osornio-Rios, Roque Alfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433707/ https://www.ncbi.nlm.nih.gov/pubmed/34502724 http://dx.doi.org/10.3390/s21175830 |
Ejemplares similares
-
Deep-Learning-Based Methodology for Fault Diagnosis in Electromechanical Systems
por: Arellano-Espitia, Francisco, et al.
Publicado: (2020) -
Diagnosis Methodology Based on Deep Feature Learning for Fault Identification in Metallic, Hybrid and Ceramic Bearings
por: Saucedo-Dorantes, Juan Jose, et al.
Publicado: (2021) -
Power Disturbance Monitoring through Techniques for Novelty Detection on Wind Power and Photovoltaic Generation
por: Gonzalez-Abreu, Artvin Darien, et al.
Publicado: (2023) -
Smart-Sensor for the Automatic Detection of Electromechanical Faults in Induction Motors Based on the Transient Stray Flux Analysis
por: Zamudio-Ramírez, Israel, et al.
Publicado: (2020) -
An Entropy-Based Condition Monitoring Strategy for the Detection and Classification of Wear Levels in Gearboxes
por: Elvira-Ortiz, David A., et al.
Publicado: (2023)