Cargando…
Assessment of Grain Harvest Moisture Content Using Machine Learning on Smartphone Images for Optimal Harvest Timing
Grain moisture content (GMC) is a key indicator of the appropriate harvest period of rice. Conventional testing is time-consuming and laborious, thus not to be implemented over vast areas and to enable the estimation of future changes for revealing optimal harvesting. Images of single panicles were...
Autores principales: | Yang, Ming-Der, Hsu, Yu-Chun, Tseng, Wei-Cheng, Lu, Chian-Yu, Yang, Chin-Ying, Lai, Ming-Hsin, Wu, Dong-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433732/ https://www.ncbi.nlm.nih.gov/pubmed/34502765 http://dx.doi.org/10.3390/s21175875 |
Ejemplares similares
-
Proper Glyphosate Application at Post-anthesis Lowers Grain Moisture Content at Harvest and Reallocates Non-structural Carbohydrates in Maize
por: Zhao, Linmao, et al.
Publicado: (2020) -
Genome-wide association study of kernel moisture content at harvest stage in maize
por: Zhou, Guangfei, et al.
Publicado: (2018) -
Moisture-induced autonomous surface potential oscillations for energy harvesting
por: Long, Yu, et al.
Publicado: (2021) -
Genetic dissection of grain water content and dehydration rate related to mechanical harvest in maize
por: Liu, Jianju, et al.
Publicado: (2020) -
Concept for Efficient Light Harvesting in Perovskite Materials via Solar Harvester with Multi-Functional Folded Electrode
por: Wei, Mao-Qugn, et al.
Publicado: (2021)