Cargando…
DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs
A novel transmission technique—namely, a DFT-spread spectrally overlapped hybrid OFDM–digital filter multiple access (DFMA) PON based on intensity modulation and direct detection (IMDD)—is here proposed by employing the discrete Fourier transform (DFT)-spread technique in each optical network unit (...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433889/ https://www.ncbi.nlm.nih.gov/pubmed/34502798 http://dx.doi.org/10.3390/s21175903 |
_version_ | 1783751467461509120 |
---|---|
author | Sankoh, Abdulai Jin, Wei Zhong, Zhuqiang He, Jiaxiang Hong, Yanhua Giddings, Roger Tang, Jianming |
author_facet | Sankoh, Abdulai Jin, Wei Zhong, Zhuqiang He, Jiaxiang Hong, Yanhua Giddings, Roger Tang, Jianming |
author_sort | Sankoh, Abdulai |
collection | PubMed |
description | A novel transmission technique—namely, a DFT-spread spectrally overlapped hybrid OFDM–digital filter multiple access (DFMA) PON based on intensity modulation and direct detection (IMDD)—is here proposed by employing the discrete Fourier transform (DFT)-spread technique in each optical network unit (ONU) and the optical line terminal (OLT). Detailed numerical simulations are carried out to identify optimal ONU transceiver parameters and explore their maximum achievable upstream transmission performances on the IMDD PON systems. The results show that the DFT-spread technique in the proposed PON is effective in enhancing the upstream transmission performance to its maximum potential, whilst still maintaining all of the salient features associated with previously reported PONs. Compared with previously reported PONs excluding DFT-spread, a significant peak-to-average power ratio (PAPR) reduction of over 2 dB is achieved, leading to a 1 dB reduction in the optimal signal clipping ratio (CR). As a direct consequence of the PAPR reduction, the proposed PON has excellent tolerance to reduced digital-to-analogue converter/analogue-to-digital converter (DAC/ADC) bit resolution, and can therefore ensure the utilization of a minimum DAC/ADC resolution of only 6 bits at the forward error correction (FEC) limit (1 × 10(−3)). In addition, the proposed PON can improve the upstream power budget by >1.4 dB and increase the aggregate upstream signal transmission rate by up to 10% without degrading nonlinearity tolerances. |
format | Online Article Text |
id | pubmed-8433889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84338892021-09-12 DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs Sankoh, Abdulai Jin, Wei Zhong, Zhuqiang He, Jiaxiang Hong, Yanhua Giddings, Roger Tang, Jianming Sensors (Basel) Article A novel transmission technique—namely, a DFT-spread spectrally overlapped hybrid OFDM–digital filter multiple access (DFMA) PON based on intensity modulation and direct detection (IMDD)—is here proposed by employing the discrete Fourier transform (DFT)-spread technique in each optical network unit (ONU) and the optical line terminal (OLT). Detailed numerical simulations are carried out to identify optimal ONU transceiver parameters and explore their maximum achievable upstream transmission performances on the IMDD PON systems. The results show that the DFT-spread technique in the proposed PON is effective in enhancing the upstream transmission performance to its maximum potential, whilst still maintaining all of the salient features associated with previously reported PONs. Compared with previously reported PONs excluding DFT-spread, a significant peak-to-average power ratio (PAPR) reduction of over 2 dB is achieved, leading to a 1 dB reduction in the optimal signal clipping ratio (CR). As a direct consequence of the PAPR reduction, the proposed PON has excellent tolerance to reduced digital-to-analogue converter/analogue-to-digital converter (DAC/ADC) bit resolution, and can therefore ensure the utilization of a minimum DAC/ADC resolution of only 6 bits at the forward error correction (FEC) limit (1 × 10(−3)). In addition, the proposed PON can improve the upstream power budget by >1.4 dB and increase the aggregate upstream signal transmission rate by up to 10% without degrading nonlinearity tolerances. MDPI 2021-09-02 /pmc/articles/PMC8433889/ /pubmed/34502798 http://dx.doi.org/10.3390/s21175903 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sankoh, Abdulai Jin, Wei Zhong, Zhuqiang He, Jiaxiang Hong, Yanhua Giddings, Roger Tang, Jianming DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs |
title | DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs |
title_full | DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs |
title_fullStr | DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs |
title_full_unstemmed | DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs |
title_short | DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs |
title_sort | dft-spread spectrally overlapped hybrid ofdm–digital filter multiple access imdd pons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433889/ https://www.ncbi.nlm.nih.gov/pubmed/34502798 http://dx.doi.org/10.3390/s21175903 |
work_keys_str_mv | AT sankohabdulai dftspreadspectrallyoverlappedhybridofdmdigitalfiltermultipleaccessimddpons AT jinwei dftspreadspectrallyoverlappedhybridofdmdigitalfiltermultipleaccessimddpons AT zhongzhuqiang dftspreadspectrallyoverlappedhybridofdmdigitalfiltermultipleaccessimddpons AT hejiaxiang dftspreadspectrallyoverlappedhybridofdmdigitalfiltermultipleaccessimddpons AT hongyanhua dftspreadspectrallyoverlappedhybridofdmdigitalfiltermultipleaccessimddpons AT giddingsroger dftspreadspectrallyoverlappedhybridofdmdigitalfiltermultipleaccessimddpons AT tangjianming dftspreadspectrallyoverlappedhybridofdmdigitalfiltermultipleaccessimddpons |