Cargando…
Experimental Validation and Deployment of Observability Applications for Monitoring of Low-Voltage Distribution Grids
Future distribution grids will be subjected to fluctuations in voltages and power flows due to the presence of renewable sources with intermittent power generation. The advanced smart metering infrastructure (AMI) enables the distribution system operators (DSOs) to measure and analyze electrical qua...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433958/ https://www.ncbi.nlm.nih.gov/pubmed/34502661 http://dx.doi.org/10.3390/s21175770 |
Sumario: | Future distribution grids will be subjected to fluctuations in voltages and power flows due to the presence of renewable sources with intermittent power generation. The advanced smart metering infrastructure (AMI) enables the distribution system operators (DSOs) to measure and analyze electrical quantities such as voltages, currents and power at each customer connection point. Various smart grid applications can make use of the AMI data either in offline or close to real-time mode to assess the grid voltage conditions and estimate losses in the lines/cables. The outputs of these applications can enable DSOs to take corrective action and make a proper plan for grid upgrades. In this paper, the process of development and deployment of applications for improving the observability of distributions grids is described, which consists of the novel deployment framework that encompasses the proposition of data collection, communication to the servers, data storage, and data visualization. This paper discussed the development of two observability applications for grid monitoring and loss calculation, their validation in a laboratory setup, and their field deployment. A representative distribution grid in Denmark is chosen for the study using an OPAL-RT real-time simulator. The results of the experimental studies show that the proposed applications have high accuracy in estimating grid voltage magnitudes and active energy losses. Further, the field deployment of the applications prove that DSOs can gain insightful information about their grids and use them for planning purposes. |
---|