Cargando…
Closing the Performance Gap between Siamese Networks for Dissimilarity Image Classification and Convolutional Neural Networks
In this paper, we examine two strategies for boosting the performance of ensembles of Siamese networks (SNNs) for image classification using two loss functions (Triplet and Binary Cross Entropy) and two methods for building the dissimilarity spaces (FULLY and DEEPER). With FULLY, the distance betwee...
Autores principales: | Nanni, Loris, Minchio, Giovanni, Brahnam, Sheryl, Sarraggiotto, Davide, Lumini, Alessandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433960/ https://www.ncbi.nlm.nih.gov/pubmed/34502700 http://dx.doi.org/10.3390/s21175809 |
Ejemplares similares
-
Experiments of Image Classification Using Dissimilarity Spaces Built with Siamese Networks
por: Nanni, Loris, et al.
Publicado: (2021) -
An Empirical Study of Different Approaches for Protein Classification
por: Nanni, Loris, et al.
Publicado: (2014) -
Convolutional Neural Networks for the Identification of African Lions from Individual Vocalizations
por: Trapanotto, Martino, et al.
Publicado: (2022) -
Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification
por: Nanni, Loris, et al.
Publicado: (2015) -
Stochastic Selection of Activation Layers for Convolutional Neural Networks
por: Nanni, Loris, et al.
Publicado: (2020)