Cargando…
Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics and Health Management Using Deep Neural Networks
In the last five years, the inclusion of Deep Learning algorithms in prognostics and health management (PHM) has led to a performance increase in diagnostics, prognostics, and anomaly detection. However, the lack of interpretability of these models results in resistance towards their deployment. Dee...
Autores principales: | Figueroa Barraza, Joaquín, López Droguett, Enrique, Martins, Marcelo Ramos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433983/ https://www.ncbi.nlm.nih.gov/pubmed/34502778 http://dx.doi.org/10.3390/s21175888 |
Ejemplares similares
-
A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics
por: Verstraete, David, et al.
Publicado: (2019) -
Interpreting Deep Neural Networks and their Predictions
por: Samek, Wojciech
Publicado: (2018) -
An Information Theoretic Interpretation to Deep Neural Networks †
por: Xu, Xiangxiang, et al.
Publicado: (2022) -
Deep Neural Networks for Optimal Selection of Features Related to Flu
por: Tarakeswara Rao, B., et al.
Publicado: (2022) -
Reliable interpretability of biology-inspired deep neural networks
por: Esser-Skala, Wolfgang, et al.
Publicado: (2023)