Cargando…
Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations
Accurate isotopic composition analysis of the greenhouse-gasses emitted in the atmosphere is an important step to mitigate global climate warnings. Optical frequency comb–based spectroscopic techniques have shown ideal performance to accomplish the simultaneous monitoring of the different isotope su...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433986/ https://www.ncbi.nlm.nih.gov/pubmed/34502774 http://dx.doi.org/10.3390/s21175883 |
Sumario: | Accurate isotopic composition analysis of the greenhouse-gasses emitted in the atmosphere is an important step to mitigate global climate warnings. Optical frequency comb–based spectroscopic techniques have shown ideal performance to accomplish the simultaneous monitoring of the different isotope substituted species of such gases. The capabilities of one such technique, namely, direct comb Vernier spectroscopy, to determine the fractional isotopic ratio composition are discussed. This technique combines interferometric filtering of the comb source in a Fabry–Perot that contains the sample gas, with a high resolution dispersion spectrometer to resolve the spectral content of each interacting frequency inside of the Fabry–Perot. Following this methodology, simultaneous spectra of ro-vibrational transitions of [Formula: see text] C [Formula: see text] O [Formula: see text] and [Formula: see text] C [Formula: see text] O [Formula: see text] molecules are recorded and analyzed with an accurate fitting procedure. Fractional isotopic ratio [Formula: see text] C/ [Formula: see text] C at 3% of precision is measured for a sample of CO [Formula: see text] gas, showing the potentialities of the technique for all isotopic-related applications of this important pollutant. |
---|