Cargando…
A Novel Fault Detection and Identification Framework for Rotating Machinery Using Residual Current Spectrum
A novel framework of model-based fault detection and identification (MFDI) for induction motor (IM)-driven rotating machinery (RM) is proposed in this study. A data-driven subspace identification (SID) algorithm is employed to obtain the IM state-space model from the voltage and current signals in a...
Autores principales: | Purbowaskito, Widagdo, Lan, Chen-Yang, Fuh, Kenny |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434057/ https://www.ncbi.nlm.nih.gov/pubmed/34502756 http://dx.doi.org/10.3390/s21175865 |
Ejemplares similares
-
A Novel Method for Fault Diagnosis of Rotating Machinery
por: Tang, Meng, et al.
Publicado: (2022) -
Diagnosis of Multiple Faults in Rotating Machinery Using Ensemble Learning
por: Inyang, Udeme Ibanga, et al.
Publicado: (2023) -
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
por: Yan, Jing, et al.
Publicado: (2021) -
Intelligent fault diagnosis and remaining useful life prediction of rotating machinery
por: Lei, Yaguo
Publicado: (2016) -
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing
por: Lu, Chen, et al.
Publicado: (2016)