Cargando…
Evaluation of the Potential of Modified Calcium Carbonate as a Carrier for Unsaturated Fatty Acids in Oxygen Scavenging Applications
Modified calcium carbonates (MCC) are inorganic mineral-based particles with a large surface area, which is enlarged by their porous internal structure consisting of hydroxyapatite and calcium carbonate crystal structures. Such materials have high potential for use as carriers for active substances...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434065/ https://www.ncbi.nlm.nih.gov/pubmed/34501090 http://dx.doi.org/10.3390/ma14175000 |
Sumario: | Modified calcium carbonates (MCC) are inorganic mineral-based particles with a large surface area, which is enlarged by their porous internal structure consisting of hydroxyapatite and calcium carbonate crystal structures. Such materials have high potential for use as carriers for active substances such as oxygen scavenging agents. Oxygen scavengers are applied to packaging to preserve the quality of oxygen-sensitive products. This study investigated the potential of MCC as a novel carrier system for unsaturated fatty acids (UFAs), with the intention of developing an oxygen scavenger. Linoleic acid (LA) and oleic acid (OA) were loaded on MCC powder, and the loaded MCC particles were characterized and studied for their oxygen scavenging activity. For both LA and OA, amounts of 20 wt% loading on MCC were found to provide optimal surface area/volume ratios. Spreading UFAs over large surface areas of 31.6 and 49 m(2) g(−1) MCC enabled oxygen exposure and action on a multitude of molecular sites, resulting in oxygen scavenging rates of 12.2 ± 0.6 and 1.7 ± 0.2 mL O(2) d(−1) g(−1), and maximum oxygen absorption capacities of >195.6 ± 13.5 and >165.0 ± 2.0 mL g(−1), respectively. Oxygen scavenging activity decreased with increasing humidity (37–100% RH) and increased with rising temperatures (5–30 °C). Overall, highly porous MCC was concluded to be a suitable UFA carrier for oxygen scavenging applications in food packaging. |
---|