Cargando…
Adaptive Unscented Kalman Filter for Target Tacking with Time-Varying Noise Covariance Based on Multi-Sensor Information Fusion
In this paper, an innovative optimal information fusion methodology based on adaptive and robust unscented Kalman filter (UKF) for multi-sensor nonlinear stochastic systems is proposed. Based on the linear minimum variance criterion, this multi-sensor information fusion method has a two-layer archit...
Autores principales: | Wang, Dapeng, Zhang, Hai, Ge, Baoshuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434080/ https://www.ncbi.nlm.nih.gov/pubmed/34502699 http://dx.doi.org/10.3390/s21175808 |
Ejemplares similares
-
Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance
por: Ge, Baoshuang, et al.
Publicado: (2019) -
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance
por: Zheng, Binqi, et al.
Publicado: (2018) -
Measurement Noise Covariance-Adapting Kalman Filters for Varying Sensor Noise Situations
por: Chhabra, Anirudh, et al.
Publicado: (2021) -
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
por: Gao, Bingbing, et al.
Publicado: (2018) -
Adaptive Robust Unscented Kalman Filter for AUV Acoustic Navigation
por: Wang, Junting, et al.
Publicado: (2019)