Cargando…
Comparison of Three Interfacial Conductive Networks Formed in Carbon Black-Filled PA6/PBT Blends
Interfacial localization of carbon fillers in cocontinuous-structured polymer blends is well-known as a high-efficiency strategy for conductive network formation. However, a comparison with interfacial localization of carbon fillers in sea-island-structured polymer blends is lacking. Here, three typ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434115/ https://www.ncbi.nlm.nih.gov/pubmed/34502966 http://dx.doi.org/10.3390/polym13172926 |
Sumario: | Interfacial localization of carbon fillers in cocontinuous-structured polymer blends is well-known as a high-efficiency strategy for conductive network formation. However, a comparison with interfacial localization of carbon fillers in sea-island-structured polymer blends is lacking. Here, three types of highly efficient conductive networks formed on the basis of interfacial localization of carbon black (CB) in polyamide 6 (PA6)/poly(butylene terephthalate) (PBT) blends with different blend compositions (80/20, 50/50 and 20/80 vol/vol) were investigated and compared in terms of electrical resistivity, morphology as well as rheological and mechanical properties. The order of the electrical percolation threshold of CB in the three blends is 50/50 < 20/80 < 80/20, which can be attributed to different network structures. The rheological percolation thresholds are close to the electrical ones, confirming the formation of CB networks. The formation mechanisms for the three types of CB network structures are analyzed. All the three types of PA6/PBT-6 vol% CB composites showed improved tensile strength compared with PA6/PBT blends, being in favor for practical applications. |
---|