Cargando…
Recognition of COVID-19 from CT Scans Using Two-Stage Deep-Learning-Based Approach: CNR-IEMN †
Since the appearance of the COVID-19 pandemic (at the end of 2019, Wuhan, China), the recognition of COVID-19 with medical imaging has become an active research topic for the machine learning and computer vision community. This paper is based on the results obtained from the 2021 COVID-19 SPGC chall...
Autores principales: | Bougourzi, Fares, Contino, Riccardo, Distante, Cosimo, Taleb-Ahmed, Abdelmalik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434147/ https://www.ncbi.nlm.nih.gov/pubmed/34502769 http://dx.doi.org/10.3390/s21175878 |
Ejemplares similares
-
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
Per-COVID-19: A Benchmark Dataset for COVID-19 Percentage Estimation from CT-Scans
por: Bougourzi, Fares, et al.
Publicado: (2021) -
COVID-19 Recognition Using Ensemble-CNNs in Two New Chest X-ray Databases
por: Vantaggiato, Edoardo, et al.
Publicado: (2021) -
Two Ensemble-CNN Approaches for Colorectal Cancer Tissue Type Classification
por: Paladini, Emanuela, et al.
Publicado: (2021) -
Radiation dose reduction based on CNR index with low-tube voltage scan for pediatric CT scan: experimental study using anthropomorphic phantoms
por: Masuda, Takanori, et al.
Publicado: (2016)