Cargando…
Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand
Sand contaminated with crude oil is becoming a major environmental issue around the world, while at the same time, fly ash generated by coal-fired power stations is having a detrimental effect on the environment. Previous studies showed that combining these two waste materials can result in an envir...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434154/ https://www.ncbi.nlm.nih.gov/pubmed/34503048 http://dx.doi.org/10.3390/polym13173008 |
_version_ | 1783751531179278336 |
---|---|
author | Abousnina, Rajab Alsalmi, Haifa Ibrahim Manalo, Allan Allister, Rochstad Lim Alajarmeh, Omar Ferdous, Wahid Jlassi, Khouloud |
author_facet | Abousnina, Rajab Alsalmi, Haifa Ibrahim Manalo, Allan Allister, Rochstad Lim Alajarmeh, Omar Ferdous, Wahid Jlassi, Khouloud |
author_sort | Abousnina, Rajab |
collection | PubMed |
description | Sand contaminated with crude oil is becoming a major environmental issue around the world, while at the same time, fly ash generated by coal-fired power stations is having a detrimental effect on the environment. Previous studies showed that combining these two waste materials can result in an environmentally sustainable geopolymer concrete. Incorporating sand contaminated with crude oil up to a certain level (4% by weight) can improve the mechanical properties of the produced geopolymer concrete but beyond this level can have a detrimental effect on its compressive strength. To overcome this challenge, this study introduces short fibres to enhance the mechanical properties of geopolymer mortar containing fine sand contaminated with 6% by weight of light crude oil. Four types of short fibres, consisting of twisted polypropylene (PP) fibres, straight PP fibres, short glass fibres and steel fibres in different dosages (0.1, 0.2, 0.3, 0.4 and 0.5% by volume of geopolymer mortar) are considered. The optimum strength was obtained when straight PP fibres were used wherein increases of up to 39% and 74% of the compressive and tensile strength, respectively, of the geopolymer mortar were achieved. Moreover, a fibre dosage of 0.5% provided the highest enhancement in the mechanical properties of the geopolymer mortar with 6% crude oil contamination. This result indicates that the reduction in strength of geopolymer due to the addition of sand with 6% crude oil contamination can be regained by using short fibres, making this new material from wastes suitable for building and construction applications. |
format | Online Article Text |
id | pubmed-8434154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84341542021-09-12 Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand Abousnina, Rajab Alsalmi, Haifa Ibrahim Manalo, Allan Allister, Rochstad Lim Alajarmeh, Omar Ferdous, Wahid Jlassi, Khouloud Polymers (Basel) Article Sand contaminated with crude oil is becoming a major environmental issue around the world, while at the same time, fly ash generated by coal-fired power stations is having a detrimental effect on the environment. Previous studies showed that combining these two waste materials can result in an environmentally sustainable geopolymer concrete. Incorporating sand contaminated with crude oil up to a certain level (4% by weight) can improve the mechanical properties of the produced geopolymer concrete but beyond this level can have a detrimental effect on its compressive strength. To overcome this challenge, this study introduces short fibres to enhance the mechanical properties of geopolymer mortar containing fine sand contaminated with 6% by weight of light crude oil. Four types of short fibres, consisting of twisted polypropylene (PP) fibres, straight PP fibres, short glass fibres and steel fibres in different dosages (0.1, 0.2, 0.3, 0.4 and 0.5% by volume of geopolymer mortar) are considered. The optimum strength was obtained when straight PP fibres were used wherein increases of up to 39% and 74% of the compressive and tensile strength, respectively, of the geopolymer mortar were achieved. Moreover, a fibre dosage of 0.5% provided the highest enhancement in the mechanical properties of the geopolymer mortar with 6% crude oil contamination. This result indicates that the reduction in strength of geopolymer due to the addition of sand with 6% crude oil contamination can be regained by using short fibres, making this new material from wastes suitable for building and construction applications. MDPI 2021-09-05 /pmc/articles/PMC8434154/ /pubmed/34503048 http://dx.doi.org/10.3390/polym13173008 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abousnina, Rajab Alsalmi, Haifa Ibrahim Manalo, Allan Allister, Rochstad Lim Alajarmeh, Omar Ferdous, Wahid Jlassi, Khouloud Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand |
title | Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand |
title_full | Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand |
title_fullStr | Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand |
title_full_unstemmed | Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand |
title_short | Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand |
title_sort | effect of short fibres in the mechanical properties of geopolymer mortar containing oil-contaminated sand |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434154/ https://www.ncbi.nlm.nih.gov/pubmed/34503048 http://dx.doi.org/10.3390/polym13173008 |
work_keys_str_mv | AT abousninarajab effectofshortfibresinthemechanicalpropertiesofgeopolymermortarcontainingoilcontaminatedsand AT alsalmihaifaibrahim effectofshortfibresinthemechanicalpropertiesofgeopolymermortarcontainingoilcontaminatedsand AT manaloallan effectofshortfibresinthemechanicalpropertiesofgeopolymermortarcontainingoilcontaminatedsand AT allisterrochstadlim effectofshortfibresinthemechanicalpropertiesofgeopolymermortarcontainingoilcontaminatedsand AT alajarmehomar effectofshortfibresinthemechanicalpropertiesofgeopolymermortarcontainingoilcontaminatedsand AT ferdouswahid effectofshortfibresinthemechanicalpropertiesofgeopolymermortarcontainingoilcontaminatedsand AT jlassikhouloud effectofshortfibresinthemechanicalpropertiesofgeopolymermortarcontainingoilcontaminatedsand |