Cargando…
Chitosan-Based Glycolipid Conjugated siRNA Delivery System for Improving Radiosensitivity of Laryngocarcinoma
Glucose Transporter-1 (GLUT-1) is considered to be a possible intrinsic marker of hypoxia in malignant tumors, which is an important factor in radioresistance of laryngocarcinoma. We speculated that the inhibition of GLUT-1 expression might improve the radiosensitivity of laryngocarcinoma. GLUT-1 si...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434167/ https://www.ncbi.nlm.nih.gov/pubmed/34502969 http://dx.doi.org/10.3390/polym13172929 |
Sumario: | Glucose Transporter-1 (GLUT-1) is considered to be a possible intrinsic marker of hypoxia in malignant tumors, which is an important factor in radioresistance of laryngocarcinoma. We speculated that the inhibition of GLUT-1 expression might improve the radiosensitivity of laryngocarcinoma. GLUT-1 siRNA was designed to inhibit the GLUT-1 expression, but the high molecular weight and difficult drug delivery limited the application. Herein, we constructed a glycolipid polymer chitosan oligosaccharide grafted stearic acid (CSSA) to conjugate siRNA via electrostatic interaction. The characteristics of CSSA and CSSA/siRNA were studied, as well as the radiosensitization effect of siRNA on human laryngocarcinoma epithelial (Hep-2) cells. Compared with the traditional commercial vector Lipofectamine(TM)2000 (Lipo), CSSA exhibited lower cytotoxicity, more efficiently cellular uptake. Incubating with CSSA/siRNA, the survival rates of Hep-2 cells were significantly decreased comparing with either the group before transfection or Lipo/siRNA. CSSA is a promising carrier for efficient siRNA delivery and radiosensitization of laryngocarcinoma. |
---|