Cargando…
Computational Prediction of Compound–Protein Interactions for Orphan Targets Using CGBVS
A variety of Artificial Intelligence (AI)-based (Machine Learning) techniques have been developed with regard to in silico prediction of Compound–Protein interactions (CPI)—one of which is a technique we refer to as chemical genomics-based virtual screening (CGBVS). Prediction calculations done via...
Autores principales: | Kanai, Chisato, Kawasaki, Enzo, Murakami, Ryuta, Morita, Yusuke, Yoshimori, Atsushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434178/ https://www.ncbi.nlm.nih.gov/pubmed/34500569 http://dx.doi.org/10.3390/molecules26175131 |
Ejemplares similares
-
Discovery of Novel eEF2K Inhibitors Using HTS Fingerprint Generated from Predicted Profiling of Compound-Protein Interactions
por: Yoshimori, Atsushi, et al.
Publicado: (2021) -
Design and Synthesis of DDR1 Inhibitors with a Desired Pharmacophore Using Deep Generative Models
por: Yoshimori, Atsushi, et al.
Publicado: (2021) -
Motif2Mol: Prediction of New Active Compounds Based on Sequence Motifs of Ligand Binding Sites in Proteins Using a Biochemical Language Model
por: Yoshimori, Atsushi, et al.
Publicado: (2023) -
Orphan Drugs, Compounded Medication and Pharmaceutical Commons
por: Hendrickx, Kim, et al.
Publicado: (2021) -
Predicting gene ontology annotations of orphan GWAS genes using protein-protein
interactions
por: Kuppuswamy, Usha, et al.
Publicado: (2014)