Cargando…
Health Monitoring of Aerospace Structures Utilizing Novel Health Indicators Extracted from Complex Strain and Acoustic Emission Data
The development of health indicators (HI) of diagnostic and prognostic potential from generally uninformative raw sensor data is both a challenge and an essential feature for data-driven diagnostics and prognostics of composite structures. In this study, new damage-sensitive features, developed from...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434215/ https://www.ncbi.nlm.nih.gov/pubmed/34502590 http://dx.doi.org/10.3390/s21175701 |
_version_ | 1783751545427329024 |
---|---|
author | Galanopoulos, Georgios Milanoski, Dimitrios Broer, Agnes Zarouchas, Dimitrios Loutas, Theodoros |
author_facet | Galanopoulos, Georgios Milanoski, Dimitrios Broer, Agnes Zarouchas, Dimitrios Loutas, Theodoros |
author_sort | Galanopoulos, Georgios |
collection | PubMed |
description | The development of health indicators (HI) of diagnostic and prognostic potential from generally uninformative raw sensor data is both a challenge and an essential feature for data-driven diagnostics and prognostics of composite structures. In this study, new damage-sensitive features, developed from strains acquired with Fiber Bragg Grating (FBG) and acoustic emission (AE) data, were investigated for their suitability as HIs. Two original fatigue test campaigns (constant and variable amplitude) were conducted on single-stringer composite panels using appropriate sensors. After an initial damage introduction in the form of either impact damage or artificial disbond, the panels were subjected to constant and variable amplitude compression–compression fatigue tests. Strain sensing using FBGs and AE was employed to monitor the damage growth, which was further verified by phased array ultrasound. Several FBGs were incorporated in special SMARTapes(TM), which were bonded along the stiffener’s feet to measure the strain field, whereas the AE sensors were strategically placed on the panels’ skin to record the acoustic emission activity. HIs were developed from FBG and AE raw data with promising behaviors for health monitoring of composite structures during service. A correlation with actual damage was attempted by leveraging the measurements from a phased array camera at several time instances throughout the experiments. The developed HIs displayed highly monotonic behaviors while damage accumulated on the composite panel, with moderate prognosability. |
format | Online Article Text |
id | pubmed-8434215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84342152021-09-12 Health Monitoring of Aerospace Structures Utilizing Novel Health Indicators Extracted from Complex Strain and Acoustic Emission Data Galanopoulos, Georgios Milanoski, Dimitrios Broer, Agnes Zarouchas, Dimitrios Loutas, Theodoros Sensors (Basel) Article The development of health indicators (HI) of diagnostic and prognostic potential from generally uninformative raw sensor data is both a challenge and an essential feature for data-driven diagnostics and prognostics of composite structures. In this study, new damage-sensitive features, developed from strains acquired with Fiber Bragg Grating (FBG) and acoustic emission (AE) data, were investigated for their suitability as HIs. Two original fatigue test campaigns (constant and variable amplitude) were conducted on single-stringer composite panels using appropriate sensors. After an initial damage introduction in the form of either impact damage or artificial disbond, the panels were subjected to constant and variable amplitude compression–compression fatigue tests. Strain sensing using FBGs and AE was employed to monitor the damage growth, which was further verified by phased array ultrasound. Several FBGs were incorporated in special SMARTapes(TM), which were bonded along the stiffener’s feet to measure the strain field, whereas the AE sensors were strategically placed on the panels’ skin to record the acoustic emission activity. HIs were developed from FBG and AE raw data with promising behaviors for health monitoring of composite structures during service. A correlation with actual damage was attempted by leveraging the measurements from a phased array camera at several time instances throughout the experiments. The developed HIs displayed highly monotonic behaviors while damage accumulated on the composite panel, with moderate prognosability. MDPI 2021-08-24 /pmc/articles/PMC8434215/ /pubmed/34502590 http://dx.doi.org/10.3390/s21175701 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Galanopoulos, Georgios Milanoski, Dimitrios Broer, Agnes Zarouchas, Dimitrios Loutas, Theodoros Health Monitoring of Aerospace Structures Utilizing Novel Health Indicators Extracted from Complex Strain and Acoustic Emission Data |
title | Health Monitoring of Aerospace Structures Utilizing Novel Health Indicators Extracted from Complex Strain and Acoustic Emission Data |
title_full | Health Monitoring of Aerospace Structures Utilizing Novel Health Indicators Extracted from Complex Strain and Acoustic Emission Data |
title_fullStr | Health Monitoring of Aerospace Structures Utilizing Novel Health Indicators Extracted from Complex Strain and Acoustic Emission Data |
title_full_unstemmed | Health Monitoring of Aerospace Structures Utilizing Novel Health Indicators Extracted from Complex Strain and Acoustic Emission Data |
title_short | Health Monitoring of Aerospace Structures Utilizing Novel Health Indicators Extracted from Complex Strain and Acoustic Emission Data |
title_sort | health monitoring of aerospace structures utilizing novel health indicators extracted from complex strain and acoustic emission data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434215/ https://www.ncbi.nlm.nih.gov/pubmed/34502590 http://dx.doi.org/10.3390/s21175701 |
work_keys_str_mv | AT galanopoulosgeorgios healthmonitoringofaerospacestructuresutilizingnovelhealthindicatorsextractedfromcomplexstrainandacousticemissiondata AT milanoskidimitrios healthmonitoringofaerospacestructuresutilizingnovelhealthindicatorsextractedfromcomplexstrainandacousticemissiondata AT broeragnes healthmonitoringofaerospacestructuresutilizingnovelhealthindicatorsextractedfromcomplexstrainandacousticemissiondata AT zarouchasdimitrios healthmonitoringofaerospacestructuresutilizingnovelhealthindicatorsextractedfromcomplexstrainandacousticemissiondata AT loutastheodoros healthmonitoringofaerospacestructuresutilizingnovelhealthindicatorsextractedfromcomplexstrainandacousticemissiondata |