Cargando…

Suppression of the High-Frequency Errors in Surface Topography Measurements Based on Comparison of Various Spline Filtering Methods

The metrology of so-called “engineering surfaces” is burdened with a substantial risk of both measurement and data analysis errors. One of the most encouraging issues is the definition of frequency-defined measurement errors. This paper proposes a new method for the suppression and reduction of high...

Descripción completa

Detalles Bibliográficos
Autor principal: Podulka, Przemysław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434231/
https://www.ncbi.nlm.nih.gov/pubmed/34501186
http://dx.doi.org/10.3390/ma14175096
Descripción
Sumario:The metrology of so-called “engineering surfaces” is burdened with a substantial risk of both measurement and data analysis errors. One of the most encouraging issues is the definition of frequency-defined measurement errors. This paper proposes a new method for the suppression and reduction of high-frequency measurement errors from the surface topography data. This technique is based on comparisons of alternative types of noise detection procedures with the examination of profile (2D) or surface (3D) details for both measured and modelled surface topography data. In this paper, the results of applying various spline filters used for suppressions of measurement noise were compared with regard to several kinds of surface textures. For the purpose of the article, the influence of proposed approaches on the values of surface topography parameters (from ISO 25178 for areal and ISO 4287 for profile standards) was also performed. The effect of the distribution of some features of surface texture on the results of suppressions of high-frequency measurement noise was also closely studied. Therefore, the surface topography analysis with Power Spectral Density, Autocorrelation Function, and novel approaches based on the spline modifications or studies of the shape of an Autocorrelation Function was presented.