Cargando…
American Sign Language Alphabet Recognition by Extracting Feature from Hand Pose Estimation
Sign language is designed to assist the deaf and hard of hearing community to convey messages and connect with society. Sign language recognition has been an important domain of research for a long time. Previously, sensor-based approaches have obtained higher accuracy than vision-based approaches....
Autores principales: | Shin, Jungpil, Matsuoka, Akitaka, Hasan, Md. Al Mehedi, Srizon, Azmain Yakin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434249/ https://www.ncbi.nlm.nih.gov/pubmed/34502747 http://dx.doi.org/10.3390/s21175856 |
Ejemplares similares
-
American Sign Language Alphabet Recognition Using a Neuromorphic Sensor and an Artificial Neural Network
por: Rivera-Acosta, Miguel, et al.
Publicado: (2017) -
Deep Learning Technology to Recognize American Sign Language Alphabet
por: Alsharif, Bader, et al.
Publicado: (2023) -
Dataset of Pakistan Sign Language and Automatic Recognition of Hand Configuration of Urdu Alphabet through Machine Learning
por: Imran, Ali, et al.
Publicado: (2021) -
Sign Language Recognition for Arabic Alphabets Using Transfer Learning Technique
por: Zakariah, Mohammed, et al.
Publicado: (2022) -
Towards Real-Time and Rotation-Invariant American Sign Language Alphabet Recognition Using a Range Camera
por: Lahamy, Hervé, et al.
Publicado: (2012)