Cargando…
Effect of Powder/Water Ratio Variation on Viscosity, Tear Strength and Detail Reproduction of Dental Alginate Impression Material (In Vitro and Clinical Study)
Background: Alginate impression is a common dental polymeric material, presented as powder to be mixed with water. Aim: 1. To analyze the effect of alginate powder/water ratio variation on viscosity, tear strength and detail reproduction by in vitro tests, and 2. To evaluate this variation’s effect...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434283/ https://www.ncbi.nlm.nih.gov/pubmed/34502963 http://dx.doi.org/10.3390/polym13172923 |
Sumario: | Background: Alginate impression is a common dental polymeric material, presented as powder to be mixed with water. Aim: 1. To analyze the effect of alginate powder/water ratio variation on viscosity, tear strength and detail reproduction by in vitro tests, and 2. To evaluate this variation’s effect on patients’ impressions. Materials and methods: Two commercial alginate products were mixed in different viscosities. Viscosity was measured by a viscometer. For the tear strength test, V-shaped specimens were used. For detail reproduction, a die with three scribed lines was used. Clinical dental impressions were examined by stereomicroscope. Results: The alginate specimens mixed with a higher powder/water ratio showed a higher viscosity and tear strength compared to those with a lower powder/water ratio. Both alginate mixtures reproduced two scribed lines in a detail reproduction test. On the other hand, no clear clinical difference was detected when examining dental impressions mixed with a different powder/water ratio. Conclusion: Although increasing the powder/water ratio of mixed alginate raised the resultant viscosity and tear strength by an in vitro test, clinically, no clear difference in tearing was detected. Detail reproduction was minimally affected by the variation in powder/water ratio. |
---|