Cargando…
Evaluation of Clustering Techniques to Predict Surface Roughness during Turning of Stainless-Steel Using Vibration Signals
In metal-cutting processes, the interaction between the tool and workpiece is highly nonlinear and is very sensitive to small variations in the process parameters. This causes difficulties in controlling and predicting the resulting surface finish quality of the machined surface. In this work, vibra...
Autores principales: | Abu-Mahfouz, Issam, Banerjee, Amit, Rahman, Esfakur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434284/ https://www.ncbi.nlm.nih.gov/pubmed/34501138 http://dx.doi.org/10.3390/ma14175050 |
Ejemplares similares
-
Evolutionary Optimization of Machining Parameters Based on Surface Roughness in End Milling of Hot Rolled Steel
por: Abu-Mahfouz, Issam, et al.
Publicado: (2021) -
Wettability and Surface Roughness Analysis of Laser Surface Texturing of AISI 430 Stainless Steel
por: Moldovan, Edit Roxana, et al.
Publicado: (2022) -
Role of the Surface Nanoscale Roughness of Stainless
Steel on Bacterial Adhesion and Microcolony Formation
por: Wu, Songmei, et al.
Publicado: (2018) -
Modeling of Cutting Parameters and Tool Geometry for Multi-Criteria Optimization of Surface Roughness and Vibration via Response Surface Methodology in Turning of AISI 5140 Steel
por: Kuntoğlu, Mustafa, et al.
Publicado: (2020) -
Collaborative Optimization of Density and Surface Roughness of 316L Stainless Steel in Selective Laser Melting
por: Deng, Yong, et al.
Publicado: (2020)