Cargando…
The Use of Synthetic IMU Signals in the Training of Deep Learning Models Significantly Improves the Accuracy of Joint Kinematic Predictions
Gait analysis based on inertial sensors has become an effective method of quantifying movement mechanics, such as joint kinematics and kinetics. Machine learning techniques are used to reliably predict joint mechanics directly from streams of IMU signals for various activities. These data-driven mod...
Autores principales: | Sharifi Renani, Mohsen, Eustace, Abigail M., Myers, Casey A., Clary, Chadd W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434290/ https://www.ncbi.nlm.nih.gov/pubmed/34502766 http://dx.doi.org/10.3390/s21175876 |
Ejemplares similares
-
Deep Learning in Gait Parameter Prediction for OA and TKA Patients Wearing IMU Sensors
por: Sharifi Renani, Mohsen, et al.
Publicado: (2020) -
BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors
por: Sharifi-Renani, Mohsen, et al.
Publicado: (2023) -
Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics
por: Niswander, Wesley, et al.
Publicado: (2020) -
IMU-Based Online Kinematic Calibration of Robot Manipulator
por: Du, Guanglong, et al.
Publicado: (2013) -
Musculoskeletal Model Development of the Elbow Joint with an Experimental Evaluation
por: Rahman, Munsur, et al.
Publicado: (2018)