Cargando…
A Reusable Efficient Green Catalyst of 2D Cu-MOF for the Click and Knoevenagel Reaction
[Cu(CPA)(BDC)](n) (CPA = 4-(Chloro-phenyl)-pyridin-4-ylmethylene-amine; BDC = 1,4-benzenedicarboxylate) has been synthesized and structurally characterized by single crystal X-Ray diffraction measurement. The structural studies establish the copper (II) containing 2D sheet with (4,4) square grid str...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434330/ https://www.ncbi.nlm.nih.gov/pubmed/34500728 http://dx.doi.org/10.3390/molecules26175296 |
Sumario: | [Cu(CPA)(BDC)](n) (CPA = 4-(Chloro-phenyl)-pyridin-4-ylmethylene-amine; BDC = 1,4-benzenedicarboxylate) has been synthesized and structurally characterized by single crystal X-Ray diffraction measurement. The structural studies establish the copper (II) containing 2D sheet with (4,4) square grid structure. The square grid lengths are 10.775 and 10.769 Å. Thermal stability is assessed by TGA, and subsequent PXRD data establish the crystallinity. The surface morphology is evaluated by FE-SEM. The N(2) adsorption−desorption analysis demonstrates the mesoporous feature (∼6.95 nm) of the Cu-MOF. This porous grid serves as heterogeneous green catalyst with superficial recyclability and thermal stability and facilitates organic transformations efficiently such as, Click and Knoevenagel reactions in the aqueous methanolic medium. |
---|