Cargando…
A Novel Unsupervised Machine Learning-Based Method for Chatter Detection in the Milling of Thin-Walled Parts
Data-driven chatter detection techniques avoid complex physical modeling and provide the basis for industrial applications of cutting process monitoring. Among them, feature extraction is the key step of chatter detection, which can compensate for the accuracy disadvantage of machine learning algori...
Autores principales: | Wang, Runqiong, Song, Qinghua, Liu, Zhanqiang, Ma, Haifeng, Gupta, Munish Kumar, Liu, Zhaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434337/ https://www.ncbi.nlm.nih.gov/pubmed/34502670 http://dx.doi.org/10.3390/s21175779 |
Ejemplares similares
-
Chatter and machine tools
por: Stone, Brian
Publicado: (2014) -
Surface Topography Prediction Model in Milling of Thin-Walled Parts Considering Machining Deformation
por: Chen, Zhitao, et al.
Publicado: (2021) -
Optimum Selection of Variable Pitch for Chatter Suppression in Face Milling Operations
por: Iglesias, Alex, et al.
Publicado: (2018) -
Milling Mechanism and Chattering Stability of Nickel-Based Superalloy Inconel 718
por: Zheng, Jin, et al.
Publicado: (2023) -
Influence of Axial Depth of Cut and Tool Position on Surface Quality and Chatter Appearance in Locally Supported Thin Floor Milling
por: Casuso, Mikel, et al.
Publicado: (2022)