Cargando…
Traffic Accident Data Generation Based on Improved Generative Adversarial Networks
For urban traffic, traffic accidents are the most direct and serious risk to people’s lives, and rapid recognition and warning of traffic accidents is an important remedy to reduce their harmful effects. However, research scholars are often confronted with the problem of scarce and difficult-to-coll...
Autores principales: | Chen, Zhijun, Zhang, Jingming, Zhang, Yishi, Huang, Zihao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434573/ https://www.ncbi.nlm.nih.gov/pubmed/34502657 http://dx.doi.org/10.3390/s21175767 |
Ejemplares similares
-
Traffic-Data Recovery Using Geometric-Algebra-Based Generative Adversarial Network
por: Zang, Di, et al.
Publicado: (2022) -
Generating mobility networks with generative adversarial networks
por: Mauro, Giovanni, et al.
Publicado: (2022) -
Improving Image Super-Resolution Based on Multiscale Generative Adversarial Networks
por: Yuan, Cao, et al.
Publicado: (2022) -
Seismic Data Augmentation Based on Conditional Generative Adversarial Networks
por: Li, Yuanming, et al.
Publicado: (2020) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021)