Cargando…
An RSS Transform—Based WKNN for Indoor Positioning
An RSS transform–based weighted k-nearest neighbor (WKNN) indoor positioning algorithm, Q-WKNN, is proposed to improve the positioning accuracy and real-time performance of Wi-Fi fingerprint–based indoor positioning. To smooth the RSS fluctuation difference caused by acquisition equipment, time, and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434578/ https://www.ncbi.nlm.nih.gov/pubmed/34502577 http://dx.doi.org/10.3390/s21175685 |
Sumario: | An RSS transform–based weighted k-nearest neighbor (WKNN) indoor positioning algorithm, Q-WKNN, is proposed to improve the positioning accuracy and real-time performance of Wi-Fi fingerprint–based indoor positioning. To smooth the RSS fluctuation difference caused by acquisition equipment, time, and environment changes, base Q is introduced in Q-WKNN to transform RSS to Q-based RSS, based on the relationship between the received signal strength (RSS) and physical distance. Analysis of the effective range of base Q indicates that Q-WKNN is more suitable for regions with noticeable environmental changes and fixed access points (APs). To reduce the positioning time, APs are selected to form a Q-WKNN similarity matrix. Adaptive K is applied to estimate the test point (TP) position. Commonly used indoor positioning algorithms are compared to Q-WKNN on Zenodo and underground parking databases. Results show that Q-WKNN has better positioning accuracy and real-time performance than WKNN, modified-WKNN (M-WKNN), Gaussian kernel (GK), and least squares-support vector machine (LS-SVM) algorithms. |
---|