Cargando…

Water-Preserving and Salt-Resistant Slow-Release Fertilizers of Polyacrylic Acid-Potassium Humate Coated Ammonium Dihydrogen Phosphate

Polyacrylic acid (PAA) has high water absorbency but poor salt resistance. Humic acid (HA) extracted from lignite was introduced into the cross-linked copolymer systems of AA to improve the water absorbency and salt-tolerance. A polyacrylic acid-potassium humate (PAA-KHA) coated ammonium dihydrogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hongping, Yang, Lanwen, Cao, Jianxin, Nie, Chenchen, Liu, Hao, Tian, Juan, Chen, Wenxing, Geng, Pinglan, Xie, Guiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434580/
https://www.ncbi.nlm.nih.gov/pubmed/34502885
http://dx.doi.org/10.3390/polym13172844
Descripción
Sumario:Polyacrylic acid (PAA) has high water absorbency but poor salt resistance. Humic acid (HA) extracted from lignite was introduced into the cross-linked copolymer systems of AA to improve the water absorbency and salt-tolerance. A polyacrylic acid-potassium humate (PAA-KHA) coated ammonium dihydrogen phosphate (ADP) fertilizer with water-preserving, salt-resistant and slow-release properties was prepared. The main properties of HA extracted from lignite oxidized by H(2)O(2) were studied. Furthermore, the synthesis process, water absorbency of PAA-KHA in deionized water and in NaCl solution, morphologies of PAA-KHA, and the slow-release performance of the fertilizer (ADP@PAA-KHA) were investigated. The results showed PAA-KHA had a layered interpenetrating network, which can provide sufficient storage space for water and nutrients. The salty water absorbency of PAA-KHA increased by about 3 times compared to PAA. Both the PO(4)(3−) and NH(4)(+) cumulative release of ADP@PAA-KHA with a coating rate of 10% in deionized water, were less than 20% within 24 h, and were 55.71% and 28.04% after the 15th day, respectively. The weight change of ADP@PAA-KHA before and after absorbing water was about 53 times in deionized water and about 4 times in 1 wt% of NaCl salty water. The results show that ADP@PAA-KHA has excellent properties of water retention, salt resistance and slow-release. This will efficiently improve the utilization of fertilizer and reduce the irrigation water consumption at the same time.