Cargando…
Adaptive Quadruped Balance Control for Dynamic Environments Using Maximum-Entropy Reinforcement Learning
External disturbance poses the primary threat to robot balance in dynamic environments. This paper provides a learning-based control architecture for quadrupedal self-balancing, which is adaptable to multiple unpredictable scenes of external continuous disturbance. Different from conventional method...
Autores principales: | Sun, Haoran, Fu, Tingting, Ling, Yuanhuai, He, Chaoming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434611/ https://www.ncbi.nlm.nih.gov/pubmed/34502796 http://dx.doi.org/10.3390/s21175907 |
Ejemplares similares
-
Controlling the Solo12 quadruped robot with deep reinforcement learning
por: Aractingi, Michel, et al.
Publicado: (2023) -
Hierarchical Vision Navigation System for Quadruped Robots with Foothold Adaptation Learning
por: Ren, Junli, et al.
Publicado: (2023) -
Leg Locomotion Adaption for Quadruped Robots with Ground Compliance Estimation
por: Zhang, Songyuan, et al.
Publicado: (2020) -
Dynamic Maximum Entropy Reduction
por: Klika, Václav, et al.
Publicado: (2019) -
Design and Dynamic Locomotion Control of Quadruped Robot with Perception-Less Terrain Adaptation
por: Wang, Lei, et al.
Publicado: (2022)