Cargando…
An Improved STL-LSTM Model for Daily Bus Passenger Flow Prediction during the COVID-19 Pandemic
The COVID-19 pandemic is a significant public health problem globally, which causes difficulty and trouble for both people’s travel and public transport companies’ management. Improving the accuracy of bus passenger flow prediction during COVID-19 can help these companies make better decisions on op...
Autores principales: | Jiao, Feng, Huang, Lei, Song, Rongjia, Huang, Haifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434621/ https://www.ncbi.nlm.nih.gov/pubmed/34502841 http://dx.doi.org/10.3390/s21175950 |
Ejemplares similares
-
LSTM Network Integrated with Particle Filter for Predicting the Bus Passenger Traffic
por: Vidya, G S, et al.
Publicado: (2023) -
Bus Single-Trip Time Prediction Based on Ensemble Learning
por: Huang, Haifeng, et al.
Publicado: (2022) -
Passenger flow prediction in bus transportation system using deep learning
por: Nagaraj, Nandini, et al.
Publicado: (2022) -
Prediction of air pollutant concentrations based on TCN-BiLSTM-DMAttention with STL decomposition
por: Li, Wenlin, et al.
Publicado: (2023) -
Prediction of Bus Passenger Traffic using Gaussian Process Regression
por: G S, Vidya, et al.
Publicado: (2022)