Cargando…

A Tutorial on Hardware-Implemented Fault Injection and Online Fault Diagnosis for High-Speed Trains

Electrical drive systems are the core of high-speed trains, providing energy transmission from electric power to traction force. Therefore, their safety and reliability topics are always active in practice. Among the current research, fault injection (FI) and fault diagnosis (FD) are representative...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xiaoyue, Qiao, Xinyu, Cheng, Chao, Zhong, Kai, Chen, Hongtian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434637/
https://www.ncbi.nlm.nih.gov/pubmed/34502847
http://dx.doi.org/10.3390/s21175957
Descripción
Sumario:Electrical drive systems are the core of high-speed trains, providing energy transmission from electric power to traction force. Therefore, their safety and reliability topics are always active in practice. Among the current research, fault injection (FI) and fault diagnosis (FD) are representative techniques, where FI is an important way to recur faults, and FD ensures the recurring faults can be successfully detected as soon as possible. In this paper, a tutorial on a hardware-implemented (HIL) platform that blends FI and FD techniques is given for electrical drive systems of high-speed trains. The main contributions of this work are fourfold: (1) An HIL platform is elaborated for realistic simulation of faults, which provides the test and verification environment for FD tasks. (2) Basics of both the static and dynamic FD methods are reviewed, whose purpose is to guide the engineers and researchers. (3) Multiple performance indexes are defined for comprehensively evaluating the FD approaches from the application viewpoints. (4) It is an integrated platform making the FI and FD work together. Finally, a summary of FD research based on the HIL platform is made.