Cargando…
Malicious Network Behavior Detection Using Fusion of Packet Captures Files and Business Feature Data
Information and communication technologies have essential impacts on people’s life. The real time convenience of the internet greatly facilitates the information transmission and knowledge exchange of users. However, network intruders utilize some communication holes to complete malicious attacks. S...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434644/ https://www.ncbi.nlm.nih.gov/pubmed/34502833 http://dx.doi.org/10.3390/s21175942 |
_version_ | 1783751648817971200 |
---|---|
author | He, Mingshu Wang, Xiaojuan Jin, Lei Dai, Bingying Kacuila, Kaiwenlv Xue, Xiaosu |
author_facet | He, Mingshu Wang, Xiaojuan Jin, Lei Dai, Bingying Kacuila, Kaiwenlv Xue, Xiaosu |
author_sort | He, Mingshu |
collection | PubMed |
description | Information and communication technologies have essential impacts on people’s life. The real time convenience of the internet greatly facilitates the information transmission and knowledge exchange of users. However, network intruders utilize some communication holes to complete malicious attacks. Some traditional machine learning (ML) methods based on business features and deep learning (DL) methods extracting features automatically are used to identify these malicious behaviors. However, these approaches tend to use only one type of data source, which can result in the loss of some features that can not be mined in the data. In order to address this problem and to improve the precision of malicious behavior detection, this paper proposed a one-dimensional (1D) convolution-based fusion model of packet capture files and business feature data for malicious network behavior detection. Fusion models improve the malicious behavior detection results compared with single ones in some available network traffic and Internet of things (IOT) datasets. The experiments also indicate that early data fusion, feature fusion and decision fusion are all effective in the model. Moreover, this paper also discusses the adaptability of one-dimensional convolution and two-dimensional (2D) convolution to network traffic data. |
format | Online Article Text |
id | pubmed-8434644 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84346442021-09-12 Malicious Network Behavior Detection Using Fusion of Packet Captures Files and Business Feature Data He, Mingshu Wang, Xiaojuan Jin, Lei Dai, Bingying Kacuila, Kaiwenlv Xue, Xiaosu Sensors (Basel) Article Information and communication technologies have essential impacts on people’s life. The real time convenience of the internet greatly facilitates the information transmission and knowledge exchange of users. However, network intruders utilize some communication holes to complete malicious attacks. Some traditional machine learning (ML) methods based on business features and deep learning (DL) methods extracting features automatically are used to identify these malicious behaviors. However, these approaches tend to use only one type of data source, which can result in the loss of some features that can not be mined in the data. In order to address this problem and to improve the precision of malicious behavior detection, this paper proposed a one-dimensional (1D) convolution-based fusion model of packet capture files and business feature data for malicious network behavior detection. Fusion models improve the malicious behavior detection results compared with single ones in some available network traffic and Internet of things (IOT) datasets. The experiments also indicate that early data fusion, feature fusion and decision fusion are all effective in the model. Moreover, this paper also discusses the adaptability of one-dimensional convolution and two-dimensional (2D) convolution to network traffic data. MDPI 2021-09-03 /pmc/articles/PMC8434644/ /pubmed/34502833 http://dx.doi.org/10.3390/s21175942 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article He, Mingshu Wang, Xiaojuan Jin, Lei Dai, Bingying Kacuila, Kaiwenlv Xue, Xiaosu Malicious Network Behavior Detection Using Fusion of Packet Captures Files and Business Feature Data |
title | Malicious Network Behavior Detection Using Fusion of Packet Captures Files and Business Feature Data |
title_full | Malicious Network Behavior Detection Using Fusion of Packet Captures Files and Business Feature Data |
title_fullStr | Malicious Network Behavior Detection Using Fusion of Packet Captures Files and Business Feature Data |
title_full_unstemmed | Malicious Network Behavior Detection Using Fusion of Packet Captures Files and Business Feature Data |
title_short | Malicious Network Behavior Detection Using Fusion of Packet Captures Files and Business Feature Data |
title_sort | malicious network behavior detection using fusion of packet captures files and business feature data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434644/ https://www.ncbi.nlm.nih.gov/pubmed/34502833 http://dx.doi.org/10.3390/s21175942 |
work_keys_str_mv | AT hemingshu maliciousnetworkbehaviordetectionusingfusionofpacketcapturesfilesandbusinessfeaturedata AT wangxiaojuan maliciousnetworkbehaviordetectionusingfusionofpacketcapturesfilesandbusinessfeaturedata AT jinlei maliciousnetworkbehaviordetectionusingfusionofpacketcapturesfilesandbusinessfeaturedata AT daibingying maliciousnetworkbehaviordetectionusingfusionofpacketcapturesfilesandbusinessfeaturedata AT kacuilakaiwenlv maliciousnetworkbehaviordetectionusingfusionofpacketcapturesfilesandbusinessfeaturedata AT xuexiaosu maliciousnetworkbehaviordetectionusingfusionofpacketcapturesfilesandbusinessfeaturedata |