Cargando…
A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals
There is an increasing trend in the industry of knowing in real-time the condition of their assets. In particular, tool wear is a critical aspect, which requires real-time monitoring to reduce costs and scrap in machining processes. Traditionally, for the purpose of predicting tool wear conditions i...
Autores principales: | Ferrando Chacón, Juan Luis, Fernández de Barrena, Telmo, García, Ander, Sáez de Buruaga, Mikel, Badiola, Xabier, Vicente, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434684/ https://www.ncbi.nlm.nih.gov/pubmed/34502874 http://dx.doi.org/10.3390/s21175984 |
Ejemplares similares
-
Acoustic emission: methodology and application
por: Nazarchuk, Zinoviy, et al.
Publicado: (2017) -
Acoustic voice characteristics with and without wearing a facemask
por: Nguyen, Duy Duong, et al.
Publicado: (2021) -
Wear Degree Quantification of Pin Connections Using Parameter-Based Analyses of Acoustic Emissions
por: Wang, Jingkai, et al.
Publicado: (2018) -
Efficient Wear Simulation Methodology for Predicting Nonlinear Wear Behavior of Tools in Sheet Metal Forming
por: Bang, Junho, et al.
Publicado: (2022) -
Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels
por: González, D., et al.
Publicado: (2022)