Cargando…

Extra‐large G‐proteins influence plant response to Sclerotinia sclerotiorum by regulating glucosinolate metabolism in Brassica juncea

Heterotrimeric G‐proteins are one of the highly conserved signal transducers across phyla. Despite the obvious importance of G‐proteins in controlling various plant growth and environmental responses, there is no information describing the regulatory complexity of G‐protein networks during pathogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiwari, Ruchi, Kaur, Jagreet, Bisht, Naveen C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435238/
https://www.ncbi.nlm.nih.gov/pubmed/34374201
http://dx.doi.org/10.1111/mpp.13096
Descripción
Sumario:Heterotrimeric G‐proteins are one of the highly conserved signal transducers across phyla. Despite the obvious importance of G‐proteins in controlling various plant growth and environmental responses, there is no information describing the regulatory complexity of G‐protein networks during pathogen response in a polyploid crop. Here, we investigated the role of extra‐large G‐proteins (XLGs) in the oilseed crop Brassica juncea, which has inherent susceptibility to the necrotrophic fungal pathogen Sclerotinia sclerotiorum. The allotetraploid B. juncea genome contains multiple homologs of three XLG genes (two BjuXLG1, five BjuXLG2, and three BjuXLG3), sharing a high level of sequence identity, gene structure organization, and phylogenetic relationship with the progenitors’ orthologs. Quantitative reverse transcription PCR analysis revealed that BjuXLGs have retained distinct expression patterns across plant developmental stages and on S. sclerotiorum infection. To determine the role of BjuXLG genes in the B. juncea defence response against S. sclerotiorum, RNAi‐based suppression was performed. Disease progression analysis showed more rapid lesion expansion and fungal accumulation in BjuXLG‐RNAi lines compared to the vector control plants, wherein suppression of BjuXLG3 homologs displayed more compromised defence response at the later time point. Knocking down BjuXLGs caused impairment of the host resistance mechanism to S. sclerotiorum, as indicated by reduced expression of defence marker genes PDF1.2 and WRKY33 on pathogen infection. Furthermore, BjuXLG‐RNAi lines showed reduced accumulation of leaf glucosinolates on S. sclerotiorum infection, wherein aliphatic glucosinolates were significantly compromised. Overall, our data suggest that B. juncea XLG genes are important signalling nodes modulating the host defence pathways in response to this necrotrophic pathogen.