Cargando…
Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle‐mediated necroptosis and inflammation to tubular epithelial cell
Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti‐inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435453/ https://www.ncbi.nlm.nih.gov/pubmed/34337860 http://dx.doi.org/10.1111/jcmm.16833 |
_version_ | 1783751796388265984 |
---|---|
author | Lei, Xian‐ying Tan, Rui‐zhi Jia, Jian Wu, Song‐lin Wen, Cheng‐li Lin, Xiao Wang, Huan Shi, Zhang‐jing Li, Bo Kang, Yan Wang, Li |
author_facet | Lei, Xian‐ying Tan, Rui‐zhi Jia, Jian Wu, Song‐lin Wen, Cheng‐li Lin, Xiao Wang, Huan Shi, Zhang‐jing Li, Bo Kang, Yan Wang, Li |
author_sort | Lei, Xian‐ying |
collection | PubMed |
description | Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti‐inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established a cisplatin‐induced AKI mouse model and a co‐culture system of BMDM and tubular epithelial cells (mTEC) to verify the renoprotective and anti‐inflammatory effects of artesunate on AKI, and explored the underlying mechanism. We found that artesunate strongly down‐regulated the serum creatinine and BUN levels in AKI mice, reduced the necroptosis of tubular cells and down‐regulated the expression of the tubular injury molecule Tim‐1. On the other hand, artesunate strongly inhibited the mRNA expression of inflammatory cytokines (IL‐1β, IL‐6 and TNF‐α), protein levels of inflammatory signals (iNOS and NF‐κB) and necroptosis signals (RIPK1, RIPK3 and MLKL) in kidney of AKI mouse. Notably, the co‐culture system proved that Mincle in macrophage can aggravate the inflammation and necroptosis of mTEC induced by LPS, and artesunate suppressed the expression of Mincle in macrophage of kidney in AKI mouse. Overexpression of Mincle in BMDM restored the damage and necroptosis inhibited by artesunate in mTEC, indicating Mincle in macrophage is the target of artesunate to protect tubule cells in AKI. Our findings demonstrated that artesunate can significantly improve renal function in AKI, which may be related to the inhibition of Mincle‐mediated macrophage inflammation, thereby reducing the damage and necroptosis to tubular cells that provide new option for the treatment of AKI. |
format | Online Article Text |
id | pubmed-8435453 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84354532021-09-15 Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle‐mediated necroptosis and inflammation to tubular epithelial cell Lei, Xian‐ying Tan, Rui‐zhi Jia, Jian Wu, Song‐lin Wen, Cheng‐li Lin, Xiao Wang, Huan Shi, Zhang‐jing Li, Bo Kang, Yan Wang, Li J Cell Mol Med Original Articles Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti‐inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established a cisplatin‐induced AKI mouse model and a co‐culture system of BMDM and tubular epithelial cells (mTEC) to verify the renoprotective and anti‐inflammatory effects of artesunate on AKI, and explored the underlying mechanism. We found that artesunate strongly down‐regulated the serum creatinine and BUN levels in AKI mice, reduced the necroptosis of tubular cells and down‐regulated the expression of the tubular injury molecule Tim‐1. On the other hand, artesunate strongly inhibited the mRNA expression of inflammatory cytokines (IL‐1β, IL‐6 and TNF‐α), protein levels of inflammatory signals (iNOS and NF‐κB) and necroptosis signals (RIPK1, RIPK3 and MLKL) in kidney of AKI mouse. Notably, the co‐culture system proved that Mincle in macrophage can aggravate the inflammation and necroptosis of mTEC induced by LPS, and artesunate suppressed the expression of Mincle in macrophage of kidney in AKI mouse. Overexpression of Mincle in BMDM restored the damage and necroptosis inhibited by artesunate in mTEC, indicating Mincle in macrophage is the target of artesunate to protect tubule cells in AKI. Our findings demonstrated that artesunate can significantly improve renal function in AKI, which may be related to the inhibition of Mincle‐mediated macrophage inflammation, thereby reducing the damage and necroptosis to tubular cells that provide new option for the treatment of AKI. John Wiley and Sons Inc. 2021-08-01 2021-09 /pmc/articles/PMC8435453/ /pubmed/34337860 http://dx.doi.org/10.1111/jcmm.16833 Text en © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Lei, Xian‐ying Tan, Rui‐zhi Jia, Jian Wu, Song‐lin Wen, Cheng‐li Lin, Xiao Wang, Huan Shi, Zhang‐jing Li, Bo Kang, Yan Wang, Li Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle‐mediated necroptosis and inflammation to tubular epithelial cell |
title | Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle‐mediated necroptosis and inflammation to tubular epithelial cell |
title_full | Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle‐mediated necroptosis and inflammation to tubular epithelial cell |
title_fullStr | Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle‐mediated necroptosis and inflammation to tubular epithelial cell |
title_full_unstemmed | Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle‐mediated necroptosis and inflammation to tubular epithelial cell |
title_short | Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle‐mediated necroptosis and inflammation to tubular epithelial cell |
title_sort | artesunate relieves acute kidney injury through inhibiting macrophagic mincle‐mediated necroptosis and inflammation to tubular epithelial cell |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435453/ https://www.ncbi.nlm.nih.gov/pubmed/34337860 http://dx.doi.org/10.1111/jcmm.16833 |
work_keys_str_mv | AT leixianying artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT tanruizhi artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT jiajian artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT wusonglin artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT wenchengli artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT linxiao artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT wanghuan artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT shizhangjing artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT libo artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT kangyan artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell AT wangli artesunaterelievesacutekidneyinjurythroughinhibitingmacrophagicminclemediatednecroptosisandinflammationtotubularepithelialcell |