Cargando…

Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells

INTRODUCTION: Traditional cancer therapies may have incomplete eradication of cancer or destroy the normal cells. Nanotechnology solves the demerit by a guide in surgical resection of tumors, targeted chemotherapies, selective to cancerous cells, etc. This new technology can reduce the risk to the p...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussein-Al-Ali, Samer Hasan, Hussein, Mohd Zobir, Bullo, Saifullah, Arulselvan, Palanisamy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435621/
https://www.ncbi.nlm.nih.gov/pubmed/34526768
http://dx.doi.org/10.2147/IJN.S312752
_version_ 1783751833564479488
author Hussein-Al-Ali, Samer Hasan
Hussein, Mohd Zobir
Bullo, Saifullah
Arulselvan, Palanisamy
author_facet Hussein-Al-Ali, Samer Hasan
Hussein, Mohd Zobir
Bullo, Saifullah
Arulselvan, Palanisamy
author_sort Hussein-Al-Ali, Samer Hasan
collection PubMed
description INTRODUCTION: Traditional cancer therapies may have incomplete eradication of cancer or destroy the normal cells. Nanotechnology solves the demerit by a guide in surgical resection of tumors, targeted chemotherapies, selective to cancerous cells, etc. This new technology can reduce the risk to the patient and automatically increased the probability of survival. Toward this goal, novel iron oxide nanoparticles (IONPs) coupled with leukemia anti-cancer drug were prepared and assessed. METHODS: The IONPs were prepared by the co-precipitation method using Fe(+3)/Fe(+2)ratio of 2:1. These IONPs were used as a carrier for chlorambucil (Chloramb), where the IONPs serve as the cores and chitosan (CS) as a polymeric shell to form Chloramb-CS-IONPs. The products were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) analysis, Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM) analyses, and thermal gravimetric analysis (TGA). RESULTS: The as-prepared IONPs were found to be magnetite (Fe(3)O(4)) and were coated by the CS polymer/Chloramb drug for the formation of the Chloramb-CS-IONPs. The average size for CS-IONPs and Chloramb-CS-IONPs nanocomposite was found to be 15 nm, with a drug loading of 19% for the letter. The release of the drug from the nanocomposite was found to be of a controlled-release manner with around 89.9% of the drug was released within about 5000 min and governed by the pseudo-second order. The in vitro cytotoxicity studies of CS-IONPs and Chloramb-CS-IONPs nanocomposite were tested on the normal fibroblast cell lines (3T3) and leukemia cancer cell lines (WEHI). Chloramb in Chloramb-CS-IONPs nanocomposite was found to be more efficient compared to its free form. CONCLUSION: This work shows that Chloramb-CS-IONPs nanocomposite is a promising candidate for magnetically targeted drug delivery for leukemia anti-cancer agents.
format Online
Article
Text
id pubmed-8435621
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-84356212021-09-14 Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells Hussein-Al-Ali, Samer Hasan Hussein, Mohd Zobir Bullo, Saifullah Arulselvan, Palanisamy Int J Nanomedicine Original Research INTRODUCTION: Traditional cancer therapies may have incomplete eradication of cancer or destroy the normal cells. Nanotechnology solves the demerit by a guide in surgical resection of tumors, targeted chemotherapies, selective to cancerous cells, etc. This new technology can reduce the risk to the patient and automatically increased the probability of survival. Toward this goal, novel iron oxide nanoparticles (IONPs) coupled with leukemia anti-cancer drug were prepared and assessed. METHODS: The IONPs were prepared by the co-precipitation method using Fe(+3)/Fe(+2)ratio of 2:1. These IONPs were used as a carrier for chlorambucil (Chloramb), where the IONPs serve as the cores and chitosan (CS) as a polymeric shell to form Chloramb-CS-IONPs. The products were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) analysis, Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM) analyses, and thermal gravimetric analysis (TGA). RESULTS: The as-prepared IONPs were found to be magnetite (Fe(3)O(4)) and were coated by the CS polymer/Chloramb drug for the formation of the Chloramb-CS-IONPs. The average size for CS-IONPs and Chloramb-CS-IONPs nanocomposite was found to be 15 nm, with a drug loading of 19% for the letter. The release of the drug from the nanocomposite was found to be of a controlled-release manner with around 89.9% of the drug was released within about 5000 min and governed by the pseudo-second order. The in vitro cytotoxicity studies of CS-IONPs and Chloramb-CS-IONPs nanocomposite were tested on the normal fibroblast cell lines (3T3) and leukemia cancer cell lines (WEHI). Chloramb in Chloramb-CS-IONPs nanocomposite was found to be more efficient compared to its free form. CONCLUSION: This work shows that Chloramb-CS-IONPs nanocomposite is a promising candidate for magnetically targeted drug delivery for leukemia anti-cancer agents. Dove 2021-09-08 /pmc/articles/PMC8435621/ /pubmed/34526768 http://dx.doi.org/10.2147/IJN.S312752 Text en © 2021 Hussein-Al-Ali et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Hussein-Al-Ali, Samer Hasan
Hussein, Mohd Zobir
Bullo, Saifullah
Arulselvan, Palanisamy
Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells
title Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells
title_full Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells
title_fullStr Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells
title_full_unstemmed Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells
title_short Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells
title_sort chlorambucil-iron oxide nanoparticles as a drug delivery system for leukemia cancer cells
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435621/
https://www.ncbi.nlm.nih.gov/pubmed/34526768
http://dx.doi.org/10.2147/IJN.S312752
work_keys_str_mv AT husseinalalisamerhasan chlorambucilironoxidenanoparticlesasadrugdeliverysystemforleukemiacancercells
AT husseinmohdzobir chlorambucilironoxidenanoparticlesasadrugdeliverysystemforleukemiacancercells
AT bullosaifullah chlorambucilironoxidenanoparticlesasadrugdeliverysystemforleukemiacancercells
AT arulselvanpalanisamy chlorambucilironoxidenanoparticlesasadrugdeliverysystemforleukemiacancercells