Cargando…
Quantitative analysis of morphological and functional features in Meibography for Meibomian Gland Dysfunction: Diagnosis and Grading
BACKGROUND: To explore the performance of quantitative morphological and functional analysis in meibography images by an automatic meibomian glands (MGs) analyser in diagnosis and grading Meibomian Gland Dysfunction (MGD). METHODS: A cross-sectional study collected 256 subjects with symptoms related...
Autores principales: | Deng, Yuqing, Wang, Qian, Luo, Zhongzhou, Li, Saiqun, Wang, Bowen, Zhong, Jing, Peng, Lulu, Xiao, Peng, Yuan, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435692/ https://www.ncbi.nlm.nih.gov/pubmed/34541482 http://dx.doi.org/10.1016/j.eclinm.2021.101132 |
Ejemplares similares
-
The Role of Meibography in the Diagnosis of Meibomian Gland Dysfunction in Ocular Surface Diseases
por: Robin, Mathieu, et al.
Publicado: (2019) -
Proposed Algorithm for Management of Meibomian Gland Dysfunction Based on Noninvasive Meibography
por: Arita, Reiko, et al.
Publicado: (2020) -
A Deep Learning Model for Evaluating Meibomian Glands Morphology from Meibography
por: Wang, Yuexin, et al.
Publicado: (2023) -
Risk Factors for Meibomian Gland Disease Assessed by Meibography
por: Kim, Christine K, et al.
Publicado: (2023) -
Deep learning-based automatic meibomian gland segmentation and morphology assessment in infrared meibography
por: Setu, Md Asif Khan, et al.
Publicado: (2021)