Cargando…
A game-theoretic approach to assess peer-to-peer rooftop solar PV electricity trading under constrained power supply
The integration of distributed energy resources and the transition to smart cities are shifting the urban energy sector to a decentralized operating system. Blockchain-based microgrids, where small-scale operators trade electricity among each others, have gained remarkable attention recently. Howeve...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435762/ http://dx.doi.org/10.1007/s12667-021-00483-3 |
Sumario: | The integration of distributed energy resources and the transition to smart cities are shifting the urban energy sector to a decentralized operating system. Blockchain-based microgrids, where small-scale operators trade electricity among each others, have gained remarkable attention recently. However, most of the proposed schemes study smart grids in prosperous cities. In this study, the performance of a solar-based power trading scheme is investigated in a shortage-prone context, Beirut City. Thus, we resort to a game-theoretic approach to model power trading as a repeated game between buildings at the urban scale. Results show that solar energy can cover up to 25% of the city electricity needs, depending on the rooftops area coverage. On the other hand, we found that deploying a peer-to-peer trading scheme has marginal impact since the energy demand in the city exceeds the supply and most buildings would prioritize self-consumption. |
---|