Cargando…

Knockdown of hsa_circ_0091994 constrains gastric cancer progression by suppressing the miR-324-5p/HMGA1 axis

CircRNAs have emerged as potential therapeutic targets for diseases such as gastric cancer (GC). We identified highly dysregulated circRNAs in GC tissue and further explored their potential mechanisms in the progression of GC. Hsa_circ_0091994 (cicrRNA_105040) was identified as a highly upregulated...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Yi, Liu, Zhao, Zhu, Hanfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436927/
https://www.ncbi.nlm.nih.gov/pubmed/34483139
http://dx.doi.org/10.18632/aging.203450
Descripción
Sumario:CircRNAs have emerged as potential therapeutic targets for diseases such as gastric cancer (GC). We identified highly dysregulated circRNAs in GC tissue and further explored their potential mechanisms in the progression of GC. Hsa_circ_0091994 (cicrRNA_105040) was identified as a highly upregulated circRNA in GC tissues, whose host gene is negatively associated with the overall survival of patients. Using cell counting kit-8 and Annexin V assays, we observed that hsa_circ_0091994 knockdown inhibited the viability of AGS and HGC-27 cells by inducing apoptosis. Scratch wound healing assays showed that hsa_circ_0091994 knockdown also inhibited GC cell healing. Bioinformatics analysis and a luciferase assays revealed that hsa_circ_0091994 knockdown inhibits GC progression by suppressing miR-324-5p and HMGA1 expression. The antitumor effect of hsa_circ_0091994 knockdown was confirmed in vivo using a mouse xenograft model. Hsa_circ_0091994 knockdown inhibited the progression of GC by inhibiting the miR-324-5p/HMGA1 axis.