Cargando…
Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes
Hypermutable simple sequence repeats (SSRs) are major drivers of phase variation in Campylobacter jejuni. The presence of multiple SSR-mediated phase-variable genes encoding enzymes that modify surface structures, including capsular polysaccharide (CPS) and lipooligosaccharide (LOS), generates extre...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437040/ https://www.ncbi.nlm.nih.gov/pubmed/34425708 http://dx.doi.org/10.1128/mBio.01401-21 |
_version_ | 1783752095911903232 |
---|---|
author | Yamamoto, Shouji Iyoda, Sunao Ohnishi, Makoto |
author_facet | Yamamoto, Shouji Iyoda, Sunao Ohnishi, Makoto |
author_sort | Yamamoto, Shouji |
collection | PubMed |
description | Hypermutable simple sequence repeats (SSRs) are major drivers of phase variation in Campylobacter jejuni. The presence of multiple SSR-mediated phase-variable genes encoding enzymes that modify surface structures, including capsular polysaccharide (CPS) and lipooligosaccharide (LOS), generates extreme cell surface diversity within bacterial populations, thereby promoting adaptation to selective pressures in host environments. Therefore, genetically controlling SSR-mediated phase variation can be important for achieving stable and reproducible research on C. jejuni. Here, we show that natural “cotransformation” is an effective method for C. jejuni genome editing. Cotransformation is a trait of naturally competent bacteria that causes uptake/integration of multiple different DNA molecules, which has been recently adapted to multiplex genome editing by natural transformation (MuGENT), a method for introducing multiple mutations into the genomes of these bacteria. We found that cotransformation efficiently occurred in C. jejuni. To examine the feasibility of MuGENT in C. jejuni, we “locked” different polyG SSR tracts in strain NCTC11168 (which are located in the biosynthetic CPS/LOS gene clusters) into either the ON or OFF configurations. This approach, termed “MuGENT-SSR,” enabled the generation of all eight edits within 2 weeks and the identification of a phase-locked strain with a highly stable type of Penner serotyping, a CPS-based serotyping scheme. Furthermore, extensive genome editing of this strain by MuGENT-SSR identified a phase-variable gene that determines the Penner serotype of NCTC11168. Thus, MuGENT-SSR provides a platform for genetic and phenotypic engineering of genetically unstable C. jejuni, making it a reliable approach for elucidating the mechanisms underlying phase-variable expression of specific phenotypes. |
format | Online Article Text |
id | pubmed-8437040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-84370402021-09-16 Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes Yamamoto, Shouji Iyoda, Sunao Ohnishi, Makoto mBio Research Article Hypermutable simple sequence repeats (SSRs) are major drivers of phase variation in Campylobacter jejuni. The presence of multiple SSR-mediated phase-variable genes encoding enzymes that modify surface structures, including capsular polysaccharide (CPS) and lipooligosaccharide (LOS), generates extreme cell surface diversity within bacterial populations, thereby promoting adaptation to selective pressures in host environments. Therefore, genetically controlling SSR-mediated phase variation can be important for achieving stable and reproducible research on C. jejuni. Here, we show that natural “cotransformation” is an effective method for C. jejuni genome editing. Cotransformation is a trait of naturally competent bacteria that causes uptake/integration of multiple different DNA molecules, which has been recently adapted to multiplex genome editing by natural transformation (MuGENT), a method for introducing multiple mutations into the genomes of these bacteria. We found that cotransformation efficiently occurred in C. jejuni. To examine the feasibility of MuGENT in C. jejuni, we “locked” different polyG SSR tracts in strain NCTC11168 (which are located in the biosynthetic CPS/LOS gene clusters) into either the ON or OFF configurations. This approach, termed “MuGENT-SSR,” enabled the generation of all eight edits within 2 weeks and the identification of a phase-locked strain with a highly stable type of Penner serotyping, a CPS-based serotyping scheme. Furthermore, extensive genome editing of this strain by MuGENT-SSR identified a phase-variable gene that determines the Penner serotype of NCTC11168. Thus, MuGENT-SSR provides a platform for genetic and phenotypic engineering of genetically unstable C. jejuni, making it a reliable approach for elucidating the mechanisms underlying phase-variable expression of specific phenotypes. American Society for Microbiology 2021-08-24 /pmc/articles/PMC8437040/ /pubmed/34425708 http://dx.doi.org/10.1128/mBio.01401-21 Text en Copyright © 2021 Yamamoto et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Yamamoto, Shouji Iyoda, Sunao Ohnishi, Makoto Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes |
title | Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes |
title_full | Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes |
title_fullStr | Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes |
title_full_unstemmed | Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes |
title_short | Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes |
title_sort | stabilizing genetically unstable simple sequence repeats in the campylobacter jejuni genome by multiplex genome editing: a reliable approach for delineating multiple phase-variable genes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437040/ https://www.ncbi.nlm.nih.gov/pubmed/34425708 http://dx.doi.org/10.1128/mBio.01401-21 |
work_keys_str_mv | AT yamamotoshouji stabilizinggeneticallyunstablesimplesequencerepeatsinthecampylobacterjejunigenomebymultiplexgenomeeditingareliableapproachfordelineatingmultiplephasevariablegenes AT iyodasunao stabilizinggeneticallyunstablesimplesequencerepeatsinthecampylobacterjejunigenomebymultiplexgenomeeditingareliableapproachfordelineatingmultiplephasevariablegenes AT ohnishimakoto stabilizinggeneticallyunstablesimplesequencerepeatsinthecampylobacterjejunigenomebymultiplexgenomeeditingareliableapproachfordelineatingmultiplephasevariablegenes |