Cargando…
New duality results for evenly convex optimization problems
We present new results on optimization problems where the involved functions are evenly convex. By means of a generalized conjugation scheme and the perturbation theory introduced by Rockafellar, we propose an alternative dual problem for a general optimization one defined on a separated locally con...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437099/ https://www.ncbi.nlm.nih.gov/pubmed/34531627 http://dx.doi.org/10.1080/02331934.2020.1756287 |
Sumario: | We present new results on optimization problems where the involved functions are evenly convex. By means of a generalized conjugation scheme and the perturbation theory introduced by Rockafellar, we propose an alternative dual problem for a general optimization one defined on a separated locally convex topological space. Sufficient conditions for converse and total duality involving the even convexity of the perturbation function and c-subdifferentials are given. Formulae for the c-subdifferential and biconjugate of the objective function of a general optimization problem are provided, too. We also characterize the total duality by means of the saddle-point theory for a notion of Lagrangian adapted to the considered framework. |
---|