Cargando…
Short- and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach
We propose a physics-constrained machine learning method—based on reservoir computing—to time-accurately predict extreme events and long-term velocity statistics in a model of chaotic flow. The method leverages the strengths of two different approaches: empirical modelling based on reservoir computi...
Autores principales: | Doan, N. A. K., Polifke, W., Magri, L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437230/ https://www.ncbi.nlm.nih.gov/pubmed/35153579 http://dx.doi.org/10.1098/rspa.2021.0135 |
Ejemplares similares
-
Learning Hidden States in a Chaotic System: A Physics-Informed Echo State Network Approach
por: Doan, Nguyen Anh Khoa, et al.
Publicado: (2020) -
Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction
por: Fry, Daniel, et al.
Publicado: (2023) -
Learning Ergodic Averages in Chaotic Systems
por: Huhn, Francisco, et al.
Publicado: (2020) -
Stability analysis of chaotic systems from data
por: Margazoglou, Georgios, et al.
Publicado: (2023) -
Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study
por: Shahi, Shahrokh, et al.
Publicado: (2022)