Cargando…
Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records
BACKGROUND: Cardiac dysrhythmias (CD) affect millions of Americans in the United States (US), and are associated with considerable morbidity and mortality. New strategies to combat this growing problem are urgently needed. OBJECTIVES: Predicting CD using electronic health record (EHR) data would all...
Autores principales: | Guo, Aixia, Smith, Sakima, Khan, Yosef M., Langabeer II, James R., Foraker, Randi E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437288/ https://www.ncbi.nlm.nih.gov/pubmed/34516567 http://dx.doi.org/10.1371/journal.pone.0239007 |
Ejemplares similares
-
Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models
por: Guo, Aixia, et al.
Publicado: (2021) -
Discovering disease–disease associations using electronic health records in The Guideline Advantage (TGA) dataset
por: Guo, Aixia, et al.
Publicado: (2021) -
Time-series cardiovascular risk factors and receipt of screening for breast, cervical, and colon cancer: The Guideline Advantage
por: Guo, Aixia, et al.
Publicado: (2020) -
Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning
por: Guo, Aixia, et al.
Publicado: (2021) -
Women and ethnoracial minorities with poor cardiovascular health measures associated with a higher risk of developing mood disorder
por: Guo, Aixia, et al.
Publicado: (2021)